Search results for: carpal tunnel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 321

Search results for: carpal tunnel

81 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 351
80 Reduction of Aerodynamic Drag Using Vortex Generators

Authors: Siddharth Ojha, Varun Dua

Abstract:

Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.

Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization

Procedia PDF Downloads 194
79 Managing the Magnetic Protection of Workers in Magnetic Resonance Imaging

Authors: Safoin Aktaou, Aya Al Masri, Kamel Guerchouche, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: In the ‘Magnetic Resonance Imaging (MRI)’ department, all workers involved in preparing the patient, setting it up, tunnel cleaning, etc. are likely to be exposed to ‘ElectroMagnetic fields (EMF)’ emitted by the MRI device. Exposure to EMF can cause adverse radio-biological effects to workers. The purpose of this study is to propose an organizational process to manage and control EMF risks. Materials and methods: The study was conducted at seven MRI departments using machines with 1.5 and 3 Tesla magnetic fields. We assessed the exposure of each one by measuring the two electromagnetic fields (static and dynamic) at different distances from the MRI machine both inside and around the examination room. Measurement values were compared with British and American references (those of the UK's ‘Medicines and Healthcare Regulatory Agency (MHRA)’ and the ‘American Radiology Society (ACR)’). Results: Following the results of EMF measurements and their comparison with the recommendations of learned societies, a zoning system that adapts to needs of different MRI services across the country has been proposed. In effect, three risk areas have been identified within the MRI services. This has led to the development of a good practice guide related to the magnetic protection of MRI workers. Conclusion: The guide established by our study is a standard that allows MRI workers to protect themselves against the risk of electromagnetic fields.

Keywords: comparison with international references, measurement of electromagnetic fields, magnetic protection of workers, magnetic resonance imaging

Procedia PDF Downloads 128
78 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 165
77 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 99
76 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge

Authors: Mohammad Mashud, S. M. Nahid Hasan

Abstract:

The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.

Keywords: airfoil, momentum injection, flap, pressure distribution

Procedia PDF Downloads 117
75 Environmental Impact Assessment Methodology of the Tirana–Elbasan Road Project

Authors: Aurora Cerri, Niko Pollojani

Abstract:

The Tirana – Elbasan Road project is the most important highway project in Albania, constructed in the period May 2011 - ongoing. This project included construction of 38 km highway category road including 2.6 km of tunnel. It serves as a corridor connecting the Tirana, Capital of Albania and South-East area, and in the near future it is expected to continue in the direction of Macedonian border. Environmental Impact Assesment procedure for this project is provided by the Albanian Environmental Law No. 10431. This law establishes the regulation of procedures for identifying, assessment and reporting on the effects of certain projects on the environment, and the associated administrative procedures, during the decision-making process by the Ministry of Environment and Tourism for issuing environmental permit, and ensures that all relevant information concerning the environment are provided and considered. Due to the nature and size of the project, during the environmental impact assessment process, the European Union legislation, namely the EIA Directive 85/337 / EEC is considered. Moreover, in some cases, due to the lack of national standards and practical guidelines, when necessary those of EU member countries are considered. This paper presents an analysis of the EIA procedure followed on ‘Tirana – Elbasan’ Road project, with a focus on the application of the main stages of the procedure such as: screening, scoping, review, the EIA report; and consideration of alternatives, measures for impact prevention and reduction, and the public hearing T/discussion.

Keywords: highway, environmental impact assesment, Tirana, prevention

Procedia PDF Downloads 288
74 Numerical and Experimental Investigation of the Turbulence Level Influence on the Flow through the Staggered Smooth Tube Bundle

Authors: L. Adjlout, N.Benharrat, O. Ladjdel, F. Djemil, A. Adjlout, T. Yahiaoui

Abstract:

The present investigation is an experimental and numerical studies of the turbulence level influence on the flow in a smooth staggered tube bundle. The experiments were carried out in a closed circuit wind tunnel of subsonic type (TE44). Three turbulence levels at the inlet namely 1%, 4.6% and 6.3% and two Reynolds numbers Re = 9300 and Re = 13950 were performed. The obtained results for the central tube show that there are two minimum values for the angles 70° and 280° corresponding to the separation points. The pressure coefficient distributions seem to have constant values between 120° and 240° resulting in Von Karman street configuration in the wake. These remarks were valid for the tests carried out. The numerical study was performed by the ANSYS FLUENT code which solves the averaged Navier-Stokes equations (RANS). Two turbulence models (k-ε RNG and k-ε realizable), two types of grids and two levels of turbulence at the entrance of 4.6% and 6.3% for Reynolds numbers of 9300 and 13950 were considered. The obtained results for the central tube were compared with the present experimental results. It is concluded that the K-ε realizable is more suitable for the pressure distribution prediction than the K-ε RNG model compared to the present experimental results for this studied case.

Keywords: tube bundle, staggered configuration, turbulence level, numerical, experimental

Procedia PDF Downloads 104
73 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator

Procedia PDF Downloads 245
72 Energy and Exergy Analyses of Thin-Layer Drying of Pineapple Slices

Authors: Apolinar Picado, Steve Alfaro, Rafael Gamero

Abstract:

Energy and exergy analyses of thin-layer drying of pineapple slices (Ananas comosus L.) were conducted in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (100, 115 and 130 °C) and an air velocity of 1.45 m/s. The effects of drying variables on energy utilisation, energy utilisation ratio, exergy loss and exergy efficiency were studied. The enthalpy difference of the gas increased as the inlet gas temperature increase. It is observed that at the 75 minutes of the drying process the outlet gas enthalpy achieves a maximum value that is very close to the inlet value and remains constant until the end of the drying process. This behaviour is due to the reduction of the total enthalpy within the system, or in other words, the reduction of the effective heat transfer from the hot gas flow to the vegetable being dried. Further, the outlet entropy exhibits a significant increase that is not only due to the temperature variation, but also to the increase of water vapour phase contained in the hot gas flow. The maximum value of the exergy efficiency curve corresponds to the maximum value observed within the drying rate curves. This maximum value represents the stage when the available energy is efficiently used in the removal of the moisture within the solid. As the drying rate decreases, the available energy is started to be less employed. The exergetic efficiency was directly dependent on the evaporation flux and since the convective drying is less efficient that other types of dryer, it is likely that the exergetic efficiency has relatively low values.

Keywords: efficiency, energy, exergy, thin-layer drying

Procedia PDF Downloads 222
71 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 132
70 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 502
69 Effects of Aircraft Wing Configuration on Aerodynamic Efficiency

Authors: Aderet Pantierer, Shmuel Pantierer, Atif Saeed, Amir Elzawawy

Abstract:

In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective.

Keywords: aerodynamics, aircraft design, aircraft efficiency, wing configuration, wing design

Procedia PDF Downloads 225
68 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 417
67 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments

Authors: Lorenza Abbracciavento, Valerio De Biagi

Abstract:

Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.

Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance

Procedia PDF Downloads 44
66 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine

Authors: O. Afshar

Abstract:

Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.

Keywords: tidal energy, lift coefficient, drag coefficient, roughness

Procedia PDF Downloads 360
65 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method

Authors: Rosangliana Chawngthu, Ramkumar K. Thapa

Abstract:

A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.

Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction

Procedia PDF Downloads 190
64 Cystic Ganglionosis in Child: Rare Entity

Authors: Jatinder Pal Singh, Harpreet Singh, Gagandeep Singh Digra, Mandeep Kaur Sidhu, Pawan Kumar

Abstract:

Introduction: Ganglion cyst is a benign condition in which there is a cystic lesion in relation to a joint or a tendon sheath arising from myxoid degeneration of fibrous connective tissue. These can be unilocular or multilocular. In rare cases, there may be multiple ganglion cysts, known as cystic ganglionosis. They can occur at any age but are commonly seen in adults. Clinically they may be asymptomatic or present as swelling or mass effect in adjacent structures. These are common in extremities such as hands and feet. Case Presentation: 11-year-old female child presented with slowly progressive painless swelling of her right hand since the age of 4. Antenatal and perinatal history was unremarkable. Her family history was negative. She denies fever, malaise, morning stiffness, weight loss, fatigue, restriction of joint movements, or any sensory and motor deficit. Lab parameters were negative for inflammatory or infectious etiology. No other joint or extremity involvement was present. On physical examination, the swelling was present on the dorsum and palmer aspect of the right hand and wrist. They were non-tender on palpation without any motor or sensory deficit. MRI hand revealed multiple well-defined fluid signal intensity cystic appearing lesions in periarticular/intraarticular locations in relation to distal radio-ulnar, radio-carpal, intercarpal, carpometacarpal, metacarpophalangeal and interphalangeal joints as well as peritendinous location around flexor tendons more so in the region of wrist, palm, 1st and 5th digit and along extensor tendons in the region of wrist, largest one noted along flexor pollicis longus tendon in thenar region and along 1st digit measuring approx. 4.6 x 1.2 x 1.2 centimeter. Pressure erosions and bone remodelling were noted in the bases of the 2nd to 5th metacarpals, capitate, trapezoid, the distal shaft of 1st metacarpal, and proximal phalanx of 1st digit. Marrow edema was noted in the base and proximal shaft of the 4th metacarpal and proximal shaft of the 3rd metacarpal – likely stress or pressure related. The patient was advised of aspiration, but the family refused the procedure. Therefore the patient was kept on conservative treatment. Conclusion: Cystic ganglionosis is a rare condition with very few cases reported in the medical literature. Its prevalence and association are not known because of the rarity of this condition. It should be considered as an important differential in patients presenting with soft tissue swelling in extremities. Treatment option includes conservative management, aspiration, and surgery. Aspiration has a high recurrence rate. Although surgery has a low recurrence rate, it carries a high rate of complications. Imaging with MRI is essential for confirmation of the cystic nature of lesions and their relation with the joint capsules or tendons. This helps in differentiating from other soft tissue lesions and presurgical planning.

Keywords: radiology, rare, cystic ganglionosis, child

Procedia PDF Downloads 49
63 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 419
62 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades

Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond

Abstract:

Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.

Keywords: turbomachine, anti-icing, cascade rig, runback water

Procedia PDF Downloads 159
61 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 123
60 Behavioral and Electroantennographic Responses of the Tea Shot Hole Borer, Euwallacea fornicatus, Eichhoff (Scolytidae: Coleoptera) to Volatiles Compounds of Montanoa bipinnatifida (Compositae: Asteraceae) and Development of a Kairomone Trap

Authors: Sachin Paul James, Selvasundaram Rajagopal, Muraleedharan Nair, Babu Azariah

Abstract:

The shot hole borer (SHB), Euwallacea fornicatus (= Xyleborus fornicatus) (Scolytidae: Coleoptera) is one of the major pests of tea in southern India and Sri Lanka. The partially dried cut stem of a jungle plant, Montanoa bipinnatifida (C.Koch) (Compositae: Asteraceae) reported to attract shot hole borer beetles in the field. Collection, isolation, identification and quantification of the emitted volatiles from the partially dried cut stems of M. bipinnatifida using dynamic head space and GC-MS revealed the presence of seven compounds viz. α- pinene, β- phellandrene, β - pinene, D- limonene, trans-caryophyllene, iso- caryophyllene and germacrene– D. Behavioural bioassays using electroantennogram (EAG) and wind tunnel proved that, among these identified compounds only α - pinene, trans-caryophyllene, β – phellandrene and germacrene-D evoked significant behavioral response and maximum response was obtained to a specific blend of these four compounds @ 10:1:0.1:3. Field trapping experiments of this blend conducted in the SHB infested field using multiple funnel traps further proved the efficiency of the blend with a mean trap catch of 176.7 ± 13.1 beetles. Mass trapping studies in the field helped to develop a kairomone trap for the management of SHB in the tea fields of southern India.

Keywords: electroantennogram, kairomone trap, Montanoa bipinnatifida, tea shot hole borer

Procedia PDF Downloads 202
59 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 22
58 Determines the Continuity of Void in Underground Mine Tunnel Using Ground Penetrating Radar

Authors: Farid Adisaputra Gumilang

Abstract:

Kucing Liar Underground Mine is a future mine of PT Freeport Indonesia PTFI that is currently being developed. In the development process, problems were found when blasting the tunnels; there were overbreak, and void occur caused by geological contact or poor rock conditions. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate the depth of rock mass yield within pillars. To prevent the potential hazard caused by void zones, geotechnical engineers must ensure the planned drift is mined in the best location where people can work safely. GPR, or Ground penetrating radar, is a geophysical method that can image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. The GPR survey measurements are conducted 48 meters along the drift that has a poor ground condition with 150MHz antenna with several angles (roof, wall, and floor). Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. In this paper, processing data using instantaneous amplitude to identify the void zone. In order to have a good interpretation and result, it combines with the geological information and borehole camera data, so the calibrated GPR data allows the geotechnical engineer to determine the safe location to change the drift location.

Keywords: underground mine, ground penetrating radar, reflectivity, borehole camera

Procedia PDF Downloads 51
57 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 60
56 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, M Shakil Shaukat

Abstract:

Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time.

Keywords: agriculture, cotton, transformation, cry genes, ELISA, PCR

Procedia PDF Downloads 362
55 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 414
54 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 148
53 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chaos, lambda diode, strange attractor, nonlinear system

Procedia PDF Downloads 51
52 Study of Efficiency of Flying Animal Using Computational Simulation

Authors: Ratih Julistina, M. Agoes Moelyadi

Abstract:

Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior.

Keywords: characteristics of aerodynamic, efficiency, flapping frequency, flapping wing, unsteady simulation

Procedia PDF Downloads 215