Search results for: biological affection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2296

Search results for: biological affection

2056 Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities

Authors: Zhichao Li

Abstract:

This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently.

Keywords: phenol, nitrogen heterocyclic aromatic hydrocarbons, phenol-degrading bacteria, microbial communities, biological treatment technology

Procedia PDF Downloads 174
2055 Estimation of the Nutritive Value of Local Forage Cowpea Cultivars in Different Environments

Authors: Salem Alghamdi

Abstract:

Genotypes collected from farmers at a different region of Saudi Arabia as well as from Egyptian cultivar and a new line from Yamen. Seeds of these genotypes were grown in Dirab Agriculture Research Station, (Middle Region) and Al-Ahsa Palms and Dates Research Center (East region), during summer of 2015. Field experiments were laid out in randomized complete block design on the first week of June with three replications. Each experiment plot contained 6 rows 3m in length. Inter- and intra-row spacing was 60 and 25cm, respectively. Seed yield and its components were estimated in addition to qualitative characters on cowpea plants grown only in Dirab using cowpea descriptor from IPGRI, 1982. Seeds for chemical composite and antioxidant contents were analyzed. Highly significant differences were detected between genotypes in both locations and the combined of two locations for seed yield and its components. Mean data clearly show exceeded determine genotypes in seed yield while indeterminate genotypes had higher biological yield that divided cowpea genotypes to two main groups 1- forage genotypes (KSU-CO98, KSU-CO99, KSU-CO100, and KSU-CO104) that were taller and produce higher branches, biological yield and these are suitable to feed on haulm 2- food genotypes (KSU-CO101, KSU-CO102, and KSU-CO103) that produce higher seed yield with lower haulm and also these genotypes characters by high seed index and light seed color. Highly significant differences were recorded for locations in all studied characters except the number of branches, seed index, and biological yield, however, the interaction of genotype x location was significant only for plant height, the number of pods and seed yield per plant.

Keywords: Cowpea, genotypes, antioxidant contents, yield

Procedia PDF Downloads 210
2054 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks

Procedia PDF Downloads 370
2053 Students' Performance, Perception and Attitude towards Interactive Online Modules to Improve Undergraduate Quantitative Skills in Biological Science

Authors: C. Suphioglu , V. Simbag, J. Markham, C. Coady, S. Belward, G. Di Trapani, P. Chunduri, J. Chuck, Y. Hodgson, L. Lluka, L. Poladian, D. Watters

Abstract:

Advances in science have made quantitative skills (QS) an essential graduate outcome for undergraduate science programs in Australia and other parts of the world. However, many students entering into degrees in Australian universities either lack these skills or have little confidence in their ability to apply them in their biological science units. It has been previously reported that integration of quantitative skills into life science programs appears to have a positive effect on student attitudes towards the importance of mathematics and statistics in biological sciences. It has also been noted that there is deficiency in QS resources available and applicable to undergraduate science students in Australia. MathBench (http://mathbench.umd.edu) is a series of online modules involving quantitative biology scenarios developed by the University of Maryland. Through collaboration with Australian universities, a project was funded by the Australian government through its Office for Learning and Teaching (OLT) to develop customized MathBench biology modules to promote the quantitative skills of undergraduate biology students in Australia. This presentation will focus on the assessment of changes in performance, perception and attitude of students in a third year Cellular Physiology unit after use of interactive online cellular diffusion modules modified for the Australian context. The modules have been designed to integrate QS into the biological science curriculum using familiar scenarios and informal language and providing students with the opportunity to review solutions to diffusion QS-related problems with interactive graphics. This paper will discuss results of pre and post MathBench quizzes composed of general and module specific questions that assessed change in student QS after MathBench; and pre and post surveys, administered before and after using MathBench modules to evaluate the students’ change in perception towards the influence of the modules, their attitude towards QS and on the development of their confidence in completing the inquiry-based activity as well as changes to their appreciation of the relevance of mathematics to cellular processes. Results will be compared to changes reported by Thompson et al., (2010) at the University of Maryland and implications for further integration of interactive online activities in the curriculum will be explored and discussed.

Keywords: quantitative skills, MathBench, maths in biology

Procedia PDF Downloads 352
2052 Integrating Efficient Anammox with Enhanced Biological Phosphorus Removal Process Through Flocs Management for Sustainable Ultra-deep Nutrients Removal from Municipal Wastewater

Authors: Qiongpeng Dan, Xiyao Li, Qiong Zhang, Yongzhen Peng

Abstract:

The nutrients removal from wastewater is of great significance for global wastewater recycling and sustainable reuse. Traditional nitrogen and phosphorus removal processes are very dependent on the input of aeration and carbon sources, which makes it difficult to meet the low-carbon goal of energy saving and emission reduction. This study reported a proof-of-concept demonstration of integrating anammox and enhanced biological phosphorus removal (EBPR) by flocs management in a single-stage hybrid bioreactor (biofilms and flocs) for simultaneous nitrogen and phosphorus removal (SNPR). Excellent removal efficiencies of nitrogen (97.7±1.3%) and phosphorus (97.4±0.7%) were obtained in low C/N ratio (3.0±0.5) municipal wastewater treatment. Interestingly, with the loss of flocs, anammox bacteria (Ca. Brocadia) was highly enriched in biofilms, with relative and absolute abundances reaching up to 12.5% and 8.3×1010 copies/g dry sludge, respectively. The anammox contribution to nitrogen removal also rose from 32.6±9.8% to 53.4±4.2%. Endogenous denitrification by flocs was proven to be the main contributor to both nitrite and nitrate reduction, and flocs loss significantly promoted nitrite flow towards anammox, facilitating AnAOB enrichment. Moreover, controlling the floc's solid retention time at around 8 days could maintain a low poly-phosphorus level of 0.02±0.001 mg P/mg VSS in the flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This study provides an update on developing a simple and feasible strategy for integrating anammox and EBPR for SNPR in mainstream municipal wastewater.

Keywords: anammox process, enhanced biological phosphorus removal, municipal wastewater, sustainable nutrients removal

Procedia PDF Downloads 9
2051 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 181
2050 Dyadic Video Evidence on How Emotions in Parent Verbal Bids Affect Child Compliance in a British Sample

Authors: Iris Sirirada Pattara-Angkoon, Rory Devine, Anja Lindberg, Wendy Browne, Sarah Foley, Gabrielle McHarg, Claire Hughes

Abstract:

Introduction: The “Terrible Twos” is a phrase used to describe toddlers 18-30 months old. It characterizes a transition from high dependency to their caregivers in infancy to more autonomy and mastery of the body and environment. Toddlers at this age may also show more willfulness and stubbornness that could predict a future trajectory leading to conduct disorders. Thus, an important goal for this age group is to promote responsiveness to their caregivers (i.e., compliance). Existing literature tends to focus on praise to increase desirable child behavior. However, this relationship is not always straightforward as some studies have found no or negative association between praise and child compliance. Research suggests positive emotions and affection showed through body language (e.g., smiles) and actions (e.g., hugs, kisses) along with positive parent-child relationship can strengthen the praise and child compliance association. Nonetheless, few studies have examined the influences of positive emotionality within the speech. This is important as implementing verbal positive emotionality is easier than physical adjustments. The literature also tends not to include fathers in the study sample as mothers were traditionally the primary caregiver. However, as child-caring duties are increasing shared equally between mothers and fathers, it is important to include fathers within the study as studies have frequently found differences between female and male caregiver characteristics. Thus, the study will address the literary gap in two ways: 1. explore the influences of positive emotionality in parental speech and 2. include an equal sample of mothers and fathers. Positive emotionality is expected to positively correlate with and predict child compliance. Methodology: This study analyzed toddlers (18-24 months) in their dyadic interactions with mothers and fathers. A Duplo (block) task was used where parents had to work with their children to build the Duplo according to the given photo for four minutes. Then, they would be told to clean up the blocks. Parental positive emotionality in different speech types (e.g., bids, praises, affirmations) and child compliance were measured. Results: The study found that mothers (M = 28.92, SD = 12.01) were significantly more likely than fathers (M = 23.01, SD = 12.28) to use positive verbal emotionality in their speech, t(105) = 4.35, p< .001. High positive emotionality in bids during Duplo task and Clean Up was positively correlated with more child compliance in each task, r(273) = .35, p< .001 and r(264) = .58, p< .001, respectively. Overall, parental positive emotionality in speech significantly predicted child compliance, F(6, 218) = 13.33, p< .001, R² = .27) with emotionality in verbal bids (t = 6.20, p< .001) and affirmations (t = 3.12, p = .002) being significant predictors. Conclusion: Positive verbal emotions may be useful for increasing compliance in toddlers. This can be beneficial for compliance interventions as well as to the parent-child relationship quality through reduction of conflict and child defiance. As this study is correlational in nature, it will be important for future research to test the directional influence of positive emotionality within speech.

Keywords: child temperament, compliance, positive emotion, toddler, verbal bids

Procedia PDF Downloads 145
2049 Total Dissolved Solids and Total Iron in High Rate Activated Sludge System

Authors: M. Y. Saleh, G. M. ELanany, M. H. Elzahar, M. Z. Elshikhipy

Abstract:

Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively.

Keywords: wastewater, activated sludge, TDS, total iron

Procedia PDF Downloads 269
2048 Optimization of Enzymatic Hydrolysis of Cooked Porcine Blood to Obtain Hydrolysates with Potential Biological Activities

Authors: Miguel Pereira, Lígia Pimentel, Manuela Pintado

Abstract:

Animal blood is a major by-product of slaughterhouses and still represents a cost and environmental problem in some countries. To be eliminated, blood should be stabilised by cooking and afterwards the slaughterhouses must have to pay for its incineration. In order to reduce the elimination costs and valorise the high protein content the aim of this study was the optimization of hydrolysis conditions, in terms of enzyme ratio and time, in order to obtain hydrolysates with biological activity. Two enzymes were tested in this assay: pepsin and proteases from Cynara cardunculus (cardosins). The latter has the advantage to be largely used in the Portuguese Dairy Industry and has a low price. The screening assays were carried out in a range of time between 0 and 10 h and using a ratio of enzyme/reaction volume between 0 and 5%. The assays were performed at the optimal conditions of pH and temperature for each enzyme: 55 °C at pH 5.2 for cardosins and 37 °C at pH 2.0 for pepsin. After reaction, the hydrolysates were evaluated by FPLC (Fast Protein Liquid Chromatography) and tested for their antioxidant activity by ABTS method. FPLC chromatograms showed different profiles when comparing the enzymatic reactions with the control (no enzyme added). The chromatogram exhibited new peaks with lower MW that were not present in control samples, demonstrating the hydrolysis by both enzymes. Regarding to the antioxidant activity, the best results for both enzymes were obtained using a ratio enzyme/reactional volume of 5% during 5 h of hydrolysis. However, the extension of reaction did not affect significantly the antioxidant activity. This has an industrial relevant aspect in what concerns to the process cost. In conclusion, the enzymatic blood hydrolysis can be a better alternative to the current elimination process allowing to the industry the reuse of an ingredient with biological properties and economic value.

Keywords: antioxidant activity, blood, by-products, enzymatic hydrolysis

Procedia PDF Downloads 476
2047 The Effects of Resident Fathers on the Children in South Africa: The Case of Selected Household in Golf View, Alice Town, Eastern Cape Province

Authors: Gabriel Acha Ekobi

Abstract:

Fathers play a crucial role in meeting family needs such as affection, protection, and socio-economic needs of children in the world in general and South Africa in particular. Fathers’ role in children’s lives is important in providing socialization, leadership skills, and teaching societal norms. Fathers influence is very significant for children’s well-being and development as it provides the child with moral lessons, guidance, and economic support. However, there is a paucity of information regarding the effects of fathers on children. In addition, despite legal frameworks such as the African Charter on the Rights and Welfare of the child (1999) introduced by the African Union to promote child rights nevertheless, it appears maltreatment, abuse, and poor health care continue to face children. Also, the Constitution of 1996 of the Republic of South Africa (Section 28 of the Bill of Rights) and the Children’s Act 38 of 2005 were introduced by the South African government to foster the rights of children. Nevertheless, these legal frameworks remain ineffective as children’s rights are still neglected by resident fathers. This paper explores the impact of resident fathers on children in the Golf View, Alice town of the Eastern Cape Province, South Africa. A qualitative research method and an exploratory research design were utilized, and 30 participants took part in the study. The participants comprised of single mothers or caregivers of children, resident fathers and social workers. Eighteen (18) single mothers or caregivers, 10 resident fathers, and two (2) social workers participated in the study. Data was collected using semi-structured and unstructured interviews and analysed thematically. Two main themes were identified: the role of fathers on children and the effects of resident fathers on children. The study found that the presence of fathers in the lives of children prevented psychosocial issues such as stress, depression, violence, and substance abuse. A father’s presence in a household was crucial in instilling moral values in children. This allowed them to build positive characters such as respect, kindness, humility, and compassion. Children with more involved fathers tend to have fewer impulse control problems, longer attention spans, and a higher level of sociability. The study concludes that the fathers’ role prevented anxiety, depression, and stress and led to the improvement of children’s education performance. Nevertheless, the absence of a father as a role model to act as a leader by instilling moral values hinders positive behaviours in children. This study recommended that occupational training and life skills programmes should be introduced by the government and other stakeholders to empower the fathers as this might provide the platform for them to bring up their children properly.

Keywords: children, fathering, household, resident, single parent

Procedia PDF Downloads 22
2046 Review on Green Synthesis of Gold Nanoparticles

Authors: Shabnam, Jagdeep Kumar

Abstract:

Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications.

Keywords: gold, nanoparticles, green synthesis, AuNP

Procedia PDF Downloads 54
2045 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control

Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol

Abstract:

Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.

Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics

Procedia PDF Downloads 171
2044 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy

Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti

Abstract:

Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.

Keywords: beneficial insects, corn borer management, drones, precision agriculture

Procedia PDF Downloads 67
2043 Bioelectronic System for Continuous Monitoring of Cardiac Activity of Benthic Invertebrates for the Assessment of a Surface Water Quality

Authors: Sergey Kholodkevich, Tatiana Kuznetsova

Abstract:

The objective assessment of ecological state of water ecosystems is impossible without the use of biological methods of the environmental monitoring capable in the integrated look to reveal negative for biota changes of quality of water as habitats. Considerable interest for the development of such methods of environmental quality control represents biomarker approach. Measuring systems, by means of which register cardiac activity characteristics, received the name of bioelectronic. Bioelectronic systems are information and measuring systems in which animals (namely, benthic invertebrates) are directly included in structure of primary converters, being an integral part of electronic system of registration of these or those physiological or behavioural biomarkers. As physiological biomarkers various characteristics of cardiac activity of selected invertebrates have been used in bioelectronic system.lChanges in cardiac activity are considered as integrative measures of the physiological condition of organisms, which reflect the state of the environment of their dwelling. Greatest successes in the development of tools of biological methods and technologies of an assessment of surface water quality in real time. Essential advantage of bioindication of water quality by such tool is a possibility of an integrated assessment of biological effects of pollution on biota and also the expressness of such method and used approaches. In the report the practical experience of authors in biomonitoring and bioindication of an ecological condition of sea, brackish- and freshwater areas is discussed. Authors note that the method of non-invasive cardiac activity monitoring of selected invertebrates can be used not only for the advancement of biomonitoring, but also is useful in decision of general problems of comparative physiology of the invertebrates.

Keywords: benthic invertebrates, physiological state, heart rate monitoring, water quality assessment

Procedia PDF Downloads 690
2042 Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent

Authors: Sushma Yadav, Anil K. Saroha

Abstract:

Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment.

Keywords: alumina based pt catalyst, BOD/COD ratio, catalytic wet air oxidation, COD removal efficiency, industrial organic raffinate

Procedia PDF Downloads 272
2041 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 613
2040 Avian Bioecological Status In Batna Wetlands (NE, Algeria)

Authors: Marref C., Bezzalla A., Marref S., Houhamdi M.

Abstract:

Wetlands represent ecosystems of great importance through their ecological and socio-economic functions and biological diversity, even if they are most threatened by anthropization. This study aimed to contribute to the creation of an inventory of bird species in Batna, on Algeria from 2020 to 2022. Counts were carried out from 8:00 to 19:00 using a telescope (20 × 60) and a pair of binoculars (10 × 50) and by employing absolute and relative methods. Birds were categorized by phenology, habitat, biogeography, and diet. A total of 80 species in 58 genera and 19 families were observed. Migratory birds were dominant (38%) phenologically, and the birds of Palearctic origin dominated (26.25%) biogeographically. Invertivorous and carnivorous species were most common (35%). Ecologically, the majority of species were waterbirds (73.75%), which are protected in Algeria. This study highlights the need for the preservation of ecosystem components and enhancement of biological resources of protected, rare, and key species. it observed 43797 individuals of Marmaronetta angustirostris during our study and reported the nesting of Podiceps nigricollis, Porphyrio porphyrio, and Tadorna ferruginea. For this reason, it is recommended to propose the area as a Ramsar site.

Keywords: biodiversity, avifauna, ecologicat status, zone humide, algerie

Procedia PDF Downloads 23
2039 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 221
2038 The Usage of Nitrogen Gas and Alum for Sludge Dewatering

Authors: Mamdouh Yousef Saleh, Medhat Hosny El-Zahar, Shymaa El-Dosoky

Abstract:

In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed.

Keywords: nitrogen gas, biological treatment, alum, dewatering sludge, greenhouse gases

Procedia PDF Downloads 180
2037 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 289
2036 Prey-Stage Preference, Functional Response, and Mutual Interference of Amblyseius swirskii Anthias-Henriot on Frankliniella occidentalis Priesner

Authors: Marjan Heidarian Dehkordi, Hossein Allahyari, Bruce Parker, Reza Talaee-Hassanlouei

Abstract:

The Western flower thrips, Frankliniella occidentalis Priesner (Thysanoptera: Thripidae), is a significant pest of many economically important crops. This study evaluated the functional responses, prey-stage preferences and mutual interference of Amblyseius swirskii Anthias-Henriot (Acari: Phytoseiidae) with F. occidentalis as the host under laboratory conditions. The predator species showed no prey stage preference for either prey 1st or 2nd instar. Logistic regression analysis suggested Type II (convex) functional response for the predator species. Consequently, the per capita searching efficiency decreased significantly from 1.2425 to -7.4987 as predator densities increased from 2 to 8. The findings from this study could help select better biological control agents for effective control of F. occidentalis and other pests in vegetable production.

Keywords: biological control, functional responses, mutual interference, prey-stage preferences

Procedia PDF Downloads 294
2035 Arothron Stellatus Fish Skin Collagen Based Composite Biosheet Incorporated with Mupirocin as a Potential Dermal Substitute for Skin Tissue Regeneration

Authors: Giriprasath Ramanathan, Sivakumar Singaravelu, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

Collagen is the abundant protein found in the skin of the animal body that has been designed to provide adequate structural support for the adhesion of cells. The dressing material widely used for tissue engineering and biomedical application has to posses good swelling and biological property for the absorption of exudates and cell proliferation. Acid solubilised collagen from the fish skin of the Arothron stellatus was extracted. The collagen with hydroxypropyl and carboxy methyl cellulose has the better biological property to enhance the healing efficiency. The inter property of collagen with interesting perspectives in the tissue engineering process leads to the development of biomaterial with natural polymer with biologically derived collagen. Keeping this as an objective, the composite biomaterial was fabricated to improve the wound healing and biological properties. In this study the collagen from Arothron stellatus fish skin (ACO) was uniformly blended separately with hydroxypropyl methyl cellulose (HPMC) and carboxyl methyl cellulose (CMC) as biosheets. The casted biosheets were impregnated with mupirocin to get rid of infection from the microbes. Further, the results obtained from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile studies and biocompatibility of the biosheets were assessed. The swelling, porosity and degradation of the casted biosheets were studied to make the biosheets as a suitable wound dressing material. ACO-HPMC and ACO-CMC biosheets both showed good results, but ACO-HPMC biosheet showed better results than ACO-CMC and hence it can be used as a potential dermal substitute in skin tissue engineering.

Keywords: arothron stellatus, biocompatibility, collagen, tensile strenght

Procedia PDF Downloads 289
2034 Spatial Design Transformation of Mount Merapi's Dwellings Using Diachronic Approach

Authors: Catharina Dwi Astuti Depari, Gregorius Agung Setyonugroho

Abstract:

In concern for human safety, living in disaster-prone areas is twofold: it is profoundly cataclysmic yet perceptibly contributive. This paradox could be identified in Kalitengah Lor Sub-village community who inhabit Mount Merapi’s most hazardous area, putting them to the highest exposure to eruptions’ cataclysmic impacts. After the devastating incident in 2010, through the Action Plan for Rehabilitation and Reconstruction, the National Government with immediate aid from humanitarian agencies initiated a relocation program by establishing nearly 2,613 temporary shelters throughout the mountain’s region. The problem arose as some of the most affected communities including those in Kalitengah Lor Sub-village, persistently refused to relocate. The obnoxious experience of those living in temporary shelters resulted from the program’s failure to support a long-term living was assumed to instigate the rejection. From the psychological standpoint, this phenomenon reflects the emotional bond between the affected communities with their former dwellings. Regarding this, the paper aims to reveal the factors influencing the emotional attachment of Kalitengah Lor community to their former dwellings including the dwellings’ spatial design transformation prior and post the eruption in 2010. The research adopted Likert five scale-questionnaire comprising a wide range of responses from strongly agree to strongly disagree. The responses were then statistically measured, leading to consensus that provides bases for further interpretations toward the local’s characteristics. Using purposive unit sampling technique, 50 respondents from 217 local households were randomly selected. Questions in the questionnaire were developed with concerns on the aspects of place attachment concept: affection, cognitive, behavior, and perception. Combined with quantitative method, the research adopted diachronic method which was aimed to analyze the spatial design transformation of each dwelling in relation to the inhabitant’s daily activities and personal preferences. The research found that access to natural resources like sand mining, agricultural farms and wood forests, social relationship and physical proximity from house to personal asset like cattle shed, are the dominant factors encouraging the locals to emotionally attached to their former dwellings. Consequently, each dwelling’s spatial design is suffered from changes in which the current house is typically larger in dimension and the bathroom is replaced by public toilet located outside the house’s backyard. Relatively unchanged, the cattle shed is still located in front of the house, the continuous visual relationship, particularly between the living and family room, is maintained, as well as the main orientation of the house towards the local street.

Keywords: diachronic method, former dwellings, local’s characteristics, place attachment, spatial design transformation

Procedia PDF Downloads 139
2033 QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Cristina Prandi, Piermichele Kobauri

Abstract:

The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).

Keywords: chemometrics, germination activity, molecular modeling, QSAR analysis, strigolactones

Procedia PDF Downloads 258
2032 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 27
2031 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering

Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez

Abstract:

The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.

Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM

Procedia PDF Downloads 233
2030 The Chemical Composition and Larvicidal Activity of Essential Oils Derived from Piper Longepetiolatum and Piper Brachypetiolatum (Piperaceae) Against Aedes Aegypti Larvae (Culicidae) Were Investigated

Authors: Suelen C. Lima, André C. de Oliveira, Rosemary A. Roque

Abstract:

Dengue is fatal arboviruses transmitted by the A. aegypti mosquito to more than 100 countries, for which the WHO estimates that 2.5 million people will be infected by these disease. The widespread of these diseases is due, among other factors, to the resistance that A. aegypti has to several commercial insecticides. On the other hand, natural products based on plants of the genus Piper (Piperaceae) are characterized by their insecticidal activities against mosquitoes. Piper longepetiolatum and Piper brachypetiolatum are species with wide distribution in the State of Amazonas. However, there is no investigation of phytochemical or biological of these plants against mosquitoes such as A. aegypti. The main of this study was to identify the chemical composition of the essential oil (EOs) from P. longepetiolatum and P. brachypetiolatum and to evaluate the biological activity against A. aegypti. The EOs were extracted by hydrodistillation from leaves (200 g) of P. longepetiolatum and P. brachypetiolatum and analyzed by GC-MS and GC-FID. The main compounds β-caryophyllene (99.9% of purity) and E-nerolidol (99.4% of purity) were purchased from Sigma-Aldrich® Brazil. The larvicidal activity of EOs (20 to 100 ppm), β-caryophyllene and E-nerolidol (10 to 50 ppm) was performed according to WHO protocol against A. aegypti larvae. The GC-MS and GC-FID analysis of EOs from P. longepetiolatum and P. brachypetiolatum indicated the majority presence of β-caryophyllene (35.42%) and E-nerolidol (49.79%), respectively. The results showed that all natural products presented larvicidal activity against A. aegypti. In this aspect, the OE from P. brachypetiolatum (LC50 of 15.51 ppm and LC90 of 22.79 ppm) was more active than the OE from P. longepetiolatum (LC50 of 47.17 ppm and LC90 of 69.60 ppm) (p < 0.05). Regarding of main compounds, E-nerolidol (LC50 of 9.50 ppm and LC90 of 23.89 ppm) showed higher larvicidal activity than the β-caryophyllene compound (LC50 of 79.00 ppm and LC90 of 230.91 ppm) (p < 0.05). The larvae treated with these natural products showed tremors and lethargic movements, suggesting that these natural products have neurotoxic action. These observations support studies to investigate the mechanism of action. This is the first record of the chemical composition and larvicidal activity of the EO from P. longepetiolatum and P. brachypetiolatum rich in β-caryophyllene and E-nerolidol against A. aegypti larvae.

Keywords: piperaceae, aedes, sesquiterpenes, biological control

Procedia PDF Downloads 40
2029 Entomopathogenic Bacteria as Biological Control Agents: Review Paper

Authors: Tadesse Kebede Dabsu

Abstract:

Insect pest is one the major limiting factor for sustainable food production. To overtake insect pest problem, since Second World War, producers have used excessive insecticide for insect pest management. However, in the era of 21st Century, the excessive use of insecticide caused insect resistant, insecticide bioaccumulation, insecticide hazard to environment, human health problem, and the like. Due to these problems, research efforts have been focused on the development of environmental free sustainable insect pest management method. To minimize all above mentioned risk utilizing of biological control such as entomopathogenicmicroorganism include bacteria, virus, fungus, and their productsare the best option for suppress insect population below certain density level. The objective of this review was to review the updated available studies and recent developments on the entomopathogenic bacteria (EPB) as biological control of insect pest and challenge of using them for control of insect pest. EPB’s mechanisms of insecticidal activities, type, taxonomy, and history are included in this paper body. EPB has been successfully used for the suppression of populations of insect pests. Controlling of harmful insect by entomopathogenic bacteria is an effective, low bioaccumulation in environment and food, very specific, reduce resistance risk in insect pest, economically and sustainable method of major insect pest management method. Identified and reported as potential major common type of entomopathogenic bacteria include Bacillus thuringiensis, Photorhabdus sp., Xenorhabdus spp.Walbachiaspp, Actinomycetesspp.etc. These bacteria being enter into insect body through natural opening or by vector release toxin protein inside of insect and disrupt the cell’s content cause natural mortality under natural condition. As per reported by different scientists, insect orders like Lepidoptera, Hemiptera, Hymenoptera, Coleoptera, and Dipterahave been successful controlled by entomopathogenic bacteria. As per coming across in different scientific research journals, much of the work was emphasised on Bacillus thuringiensisbsp. Therefore, for commercial production like Bacillus thuringiensi, detail research should be done on other bacteria species. The efficacy and practical application of EPB are restricted to some crops and greenhouse area, but their field application at farmers’ level very less. So still much work needs to be done to the practical application of the EPB at widely application. Their efficacy, pathogenicity, and host range test should be tested under environmental condition.

Keywords: insect pest, entomopathogenic bacteria, biological control, agent

Procedia PDF Downloads 111
2028 Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study

Authors: Azza Mohsin Al-Hashami, Reginald Victor

Abstract:

Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge.

Keywords: wastewater, STP, treatment, processes

Procedia PDF Downloads 150
2027 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem

Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane

Abstract:

Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.

Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control

Procedia PDF Downloads 318