Search results for: aggregated stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3770

Search results for: aggregated stem cells

3530 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 168
3529 Determination of the Pull-Out/ Holding Strength at the Taper-Trunnion Junction of Hip Implants

Authors: Obinna K. Ihesiulor, Krishna Shankar, Paul Smith, Alan Fien

Abstract:

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the taper-trunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by Pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

Keywords: wear, modular hip prosthesis, taper head-stem, force assembly and disassembly

Procedia PDF Downloads 371
3528 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 126
3527 Stability Analysis of Tumor-Immune Fractional Order Model

Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu

Abstract:

A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.

Keywords: cancer model, fractional calculus, numerical simulations, stability analysis

Procedia PDF Downloads 286
3526 Enhanced Cytotoxic Effect of Expanded NK Cells with IL12 and IL15 from Leukoreduction Filter on K562 Cell Line Exhibits Comparable Cytotoxicity to Whole Blood

Authors: Abdulbaset Mazarzaei

Abstract:

Natural killer (NK) cells are innate immune effectors that play a pivotal role in combating tumors and infected cells. In recent years, the therapeutic potential of NK cells has gained significant attention due to their remarkable cytotoxic ability. This study focuses on investigating the cytotoxic effect of expanded NK cells enriched with interleukin 12 (IL12) and interleukin 15 (IL15), derived from the leukoreduction filter, on the K562 cell line. Firstly, NK cells were isolated from whole blood samples obtained from healthy volunteers. These cells were subsequently expanded ex vivo using a combination of feeder cells, IL12, and IL15. The expanded NK cells were then harvested and assessed for their cytotoxicity against K562, a well-established human chronic myelogenous leukemia cell line. The cytotoxicity was evaluated using flow cytometry assay. Results demonstrate that the expanded NK cells significantly exhibited enhanced cytotoxicity against K562 cells compared to non-expanded NK cells. Interestingly, the expanded NK cells derived specifically from IL12 and IL15-enriched leukoreduction filters showed a robust cytotoxic effect similar to the whole blood-derived NK cells. These findings suggest that IL12 and IL15 in the leukoreduction filter are crucial in promoting NK cell cytotoxicity. Furthermore, the expanded NK cells displayed relatively similar cytotoxicity profiles to whole blood-derived NK cells, indicating their comparable capability in targeting and eliminating tumor cells. This observation is of significant relevance as expanded NK cells from the leukoreduction filter could potentially serve as a readily accessible and efficient source for adoptive immunotherapy. In conclusion, this study highlights the significant cytotoxic effect of expanded NK cells enriched with IL12 and IL15 obtained from the leukoreduction filter on the K562 cell line. Moreover, it emphasizes that these expanded NK cells exhibit comparable cytotoxicity to whole blood-derived NK cells. These findings reinforce the potential clinical utility of using expanded NK cells from the leukoreduction filter as an effective strategy in adoptive immunotherapy for the treatment of cancer. Further studies are warranted to explore the broader implications of this approach in clinical settings.

Keywords: natural killer (NK) cells, Cytotoxicity, Leukoreduction filter, IL-12 and IL-15 Cytokines

Procedia PDF Downloads 37
3525 Anatomy Study of Seeds of Calligonium comosum in Vitro

Authors: Abobkar Saad, Qasmia Abdalla, Fatma Emhemed

Abstract:

Eighty-four of Calligonum comosum were cultured on Murashige and Skoog medium on every combination supplemented with different concentrations of IAA, BA, Zeatin, and GA3. When 84 seeds were inoculated on MS free hormones, different types of cells contain dense cytoplasm were observed ater 23 days and long thick wall cells arranged in layers. In case of using MS +BA(0.5mg/L), different types and shapes of parenchyma cells contain dense cytoplasm were detected after four weeks. In the case of using MS + BA(1mg/L) + GA3 (3mg/L), thick wall parenchyma cells contain dense cytoplasm after 19 days, but many layers of parenchyma cells contain dense cytoplasm after 28 days. When MS +kin(0.5mg/L) a thick cells wall as Sclereids were observed after 29 days. No any response were observed on Zeatin (0.5, 1 mg/L).

Keywords: anatomy, Calligonum comosum, in vitro, aeeds

Procedia PDF Downloads 389
3524 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires

Authors: W. S. Li, S. T. Yang, H. C. Cheng

Abstract:

The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).

Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes

Procedia PDF Downloads 294
3523 The Influence of Cultural Perceptions in the Preference and Choice of STEM Programs

Authors: Priscilla Adoley Moffat

Abstract:

This study explored perceptions rooted in and acquired from the cultures of many developing countries and how they impact applicants’ preferences and choices of STEM programs. The context of developing countries was chosen for this study because gender role socialization continues to maintain an important place in most of these cultures. This study’s relevance rests in the fact that, as the world takes steps to encourage and promote the choice and study of STEM programs, especially among females, there is a need for efforts towards understanding various cultural perceptions towards some programs of study, particularly STEM programs, which have diverse gender attributions in many developing cultures. Also, as the world strives to achieve gender equity in education, such a study comes in handy, as it provides a useful understanding of the underlying cultural factors that affect study program preferences of applicants, particularly in developing countries like Ghana as well as others in Africa. The study analyzed the admission application data of five public universities in Ghana. 1600 randomly-sampled final-year students of 32 randomly-selected senior high schools from the 16 regions of Ghana were interviewed. Since parents and teachers often guide and influence the study program choices of applicants, the study examined the perceptions of 180 teachers and 360 parents. The study found, among other things, that STEM programs are commonly perceived to pose much more difficulty to females than they do to males. As a result, many female applicants are discouraged from choosing these programs. While nursing programs are perceived more as programs for females, with the justification that females are better caregivers, males are perceived to be better medical doctors, engineers, and computer technicians. Thus, many females are less encouraged to choose Technology and Engineering programs.

Keywords: culture, perceptions, STEM, choice, preference

Procedia PDF Downloads 49
3522 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells

Authors: S. Pradhan, D. Pradhan, G. Tripathy

Abstract:

Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.

Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells

Procedia PDF Downloads 292
3521 Th2 and Th17 Subsets in the Circulation of Psoriasis Patients

Authors: Chakrit Thapphan, Suteeraporn Chaowattanapanit, Sorutsiri Chareonsudjai, Wisitsak Phoksawat, Supranee Phantanawiboon, Kiatichai Faksri, Steve W. Edwards, Kanin Salao

Abstract:

Background: Psoriasis is a chronic inflammatory disease of the skin that is mediated by crosstalk between keratinocytes and immune cells, especially CD4+ T helper (Th) cells. To date, psoriasis is established as a T helper 17 (Th17) cell-mediated inflammatory process driven by the over-expression of Th17. However, the role of other CD4+T helper cells is rather controversial. Objective: Our study, thereby, aimed to characterize and analyze T cell subsets in the circulating blood of psoriasis patients and compare them to healthy controls. Methods: Peripheral blood mononuclear cells were isolated from the participants and stained with fluorescent dye-conjugated monoclonal antibodies specific for intracellular cytokines, including interferon-gamma (IFN- γ), interleukin (IL-4), IL-17 and forkhead box P3 (FOXP3), that can be used to define T helper 1 (Th1) cells, T helper 2 (Th2), T helper 17 (Th17) and regulatory T cells (Treg) respectively. Results: We found that the numbers of Th2 (59.6% ± 17.0) and Th17 (4.0% ± 2.0) cells in the circulating blood of psoriasis patients were significantly higher than those of the healthy controls (p= 0.0007 and 0.0013 respectively). In contrast, the numbers of Th1 and Treg cells were not significantly different between psoriasis patients and healthy controls (p= 0.0593 and 0.8518, respectively). Additionally, when adjusting these numbers of Th cells to Treg, we observed a similar trend that the ratio of Th2/Treg and Th17/Treg also elevated (p = 0.0007 and 0.0047, respectively). Conclusion: Taken together, our results suggest an imbalanced T exhibit toward the Th2 and Th17 skewed-immune responses in psoriasis patients.

Keywords: psoriasis, Th cell subsets, Th2 cells, Th17 cells, Treg cells

Procedia PDF Downloads 49
3520 STEM (Science–Technology–Engineering–Mathematics) Based Entrepreneurship Training, Within a Learning Company

Authors: Diana Mitova, Krassimir Mitrev

Abstract:

To prepare the current generation for the future, education systems need to change. It implies a way of learning that meets the demands of the times and the environment in which we live. Productive interaction in the educational process implies an interactive learning environment and the possibility of personal development of learners based on communication and mutual dialogue, cooperation and good partnership in decision-making. Students need not only theoretical knowledge, but transferable skills that will help them to become inventors and entrepreneurs, to implement ideas. STEM education , is now a real necessity for the modern school. Through learning in a "learning company", students master examples from classroom practice, simulate real life situations, group activities and apply basic interactive learning strategies and techniques. The learning company is the subject of this study, reduced to entrepreneurship training in STEM - technologies that encourage students to think outside the traditional box. STEM learning focuses the teacher's efforts on modeling entrepreneurial thinking and behavior in students and helping them solve problems in the world of business and entrepreneurship. Learning based on the implementation of various STEM projects in extracurricular activities, experiential learning, and an interdisciplinary approach are means by which educators better connect the local community and private businesses. Learners learn to be creative, experiment and take risks and work in teams - the leading characteristics of any innovator and future entrepreneur. This article presents some European policies on STEM and entrepreneurship education. It also shares best practices for training company training , with the integration of STEM in the learning company training environment. The main results boil down to identifying some advantages and problems in STEM entrepreneurship education. The benefits of using integrative approaches to teach STEM within a training company are identified, as well as the positive effects of project-based learning in a training company using STEM. Best practices for teaching entrepreneurship through extracurricular activities using STEM within a training company are shared. The following research methods are applied in this research paper: Theoretical and comparative analysis of principles and policies of European Union countries and Bulgaria in the field of entrepreneurship education through a training company. Experiences in entrepreneurship education through extracurricular activities with STEM application within a training company are shared. A questionnaire survey to investigate the motivation of secondary vocational school students to learn entrepreneurship through a training company and their readiness to start their own business after completing their education. Within the framework of learning through a "learning company" with the integration of STEM, the activity of the teacher-facilitator includes the methods: counseling, supervising and advising students during work. The expectation is that students acquire the key competence "initiative and entrepreneurship" and that the cooperation between the vocational education system and the business in Bulgaria is more effective.

Keywords: STEM, entrepreneurship, training company, extracurricular activities

Procedia PDF Downloads 73
3519 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 51
3518 Applications of Copper Sensitive Fluorescent Dye to the Studies of the Role of Copper in Cisplatin Resistance in Human Cancer

Authors: Sumayah Mohammed Asiri A., Aviva Levina B., Elizabeth New C., Peter Lay D.

Abstract:

Pt compounds have been among the most successful anticancer drugs in the last 40 years, but the development of resistance to them is an increasing problem. Cellular homeostasis of an essential metal, Cu, is known to be involved in Pt resistance, but mechanisms of this process are poorly understood. We used a novel ratiometric Cu(I)-sensitive fluorescent probeInCCu1 dye to detect Cu(I) in the mitochondria. Total Cu and labile Cu pool measured using AAS and InCCu1 dye in A2780 cells and their corresponding resistant cells A2780-cis.R cells treated with Cu and cisplatin. The main difference between both cell lines in the presence and absence of Cu(II) is that resistant cells have lower total Cu content but higher labile Cu levels than cisplatin-sensitive cells. This means that resistant cells can metabolize and export excess Cu more efficiently. Furthermore, InCCu1 has emerged not only as an indicator of labile cellular Cu levels in the mitochondria but as a potentially versatile multi-organelle probe.

Keywords: AAS and ICPMS, A2780 and its resistant cells, ratiometric fluorescent sensors, inCCu1, and total and labile Cu

Procedia PDF Downloads 175
3517 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles

Authors: Huan Peng, Chenye Zeng, Zhao Wang

Abstract:

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.

Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles

Procedia PDF Downloads 22
3516 Intentional Relationship Building: Stem Faculty Perceptions of Culturally Responsive Mentoring

Authors: Niesha Douglas, Lisa Merriweather, Cathy Howell, Anna Sancyzk

Abstract:

Many studies explain that mentoring in an academic setting contributes to student success and retention. However, in the United States, where the population is diverse and filled with multiple ethnic groups, mentoring has become too generalized and fails to offer a unique individualized experience for underrepresented minorities (URM). The purpose of this paper is to describe the findings of an ongoing qualitative study that investigates the relationships among STEM doctoral faculty and URM students. Several faculty from three different predominately white institutions (PWI) in the Southeastern region of the United States were interviewed and engaged in open dialogue about their experiences with mentoring. The data collection included semi-structured interviews that took place in the classroom (pre-COVID-19) as well as virtually. The theoretical framework draws on the idea of Critical Race Theory and how cultural, social constructs interfere with effective mentoring for URM Doctoral STEM students. The findings in this study suggest that though the faculty and several years of experience mentoring students, there were some gaps in understanding the needs of URM students and how mentoring is a unique relationship that should be specialized for each student and should not fit into one mold.

Keywords: culture, critical race theory, mentoring, STEM

Procedia PDF Downloads 166
3515 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 414
3514 Status and Management of Grape Stem Borer, Celosterna scrabrator with Soil Application of Chlorantraniliprole 0.4 gr

Authors: D. N. Kambrekar, S. B. Jagginavar, J. Aruna

Abstract:

Grape stem borer, Celosterna scrabrator is an important production constraint in grapes in India. Hitherto this pest was a severe menace only on the aged and unmanaged fields but during the recent past it has also started damaging the newly established fields. In India, since Karnataka, Andra Pradesh, Tamil Nadu and Maharashtra are the major grape production states, the incidence of stem borer is also restricted and severe in these states. The grubs of the beetle bore in to the main stem and even the branches, which affect the translocation of nutrients to the areal parts of the plant. Since, the grubs bore inside the stem, the chewed material along with its excreta is discharged outside the holes and the frass is found on the ground just below the bored holes. The portion of vines above the damaged part has a sticky appearance. The leaves become pale yellow which looks like a deficiency of micronutrients. The leaves ultimately dry and drop down. The status of the incidence of the grape stem borer in different grape growing districts of Northern Karnataka was carried out during three years. In each taluka five locations were surveyed for the incidence of grape stem borer. Further, the experiment on management of stem borer was carried out in the grape gardens of Vijayapur districts under farmers field during three years. Stem borer infested plants that show live holes were selected per treatments and it was replicated three times. Live and dead holes observed during pre-treatment were closely monitored and only plants with live holes were selected and tagged. Different doses of chlorantraniliprole 0.4% GR were incorporated into the soil around the vine basins near root zone surrounded to trunk region by removing soils up to 5-10 cm with a peripheral distance of 1 to 1.5 feet from the main trunk where feeder roots are present. Irrigation was followed after application of insecticide for proper incorporation of the test chemical. The results indicated that there was sever to moderate incidence of the stem borer in all the grape growing districts of northern Karnataka. Maximum incidence was recorded in Belagavi (11 holes per vine) and minimum was in Gadag district (8.5 holes per vine). The investigations carried out to study the efficacy of chlorantraniliprole on grape stem borer for successive three years under farmers field indicated that chlorantraniliprole @ 15g/vine applied just near the active root zone of the plant followed by irrigation has successfully managed the pest. The insecticide has translocated to all the parts of the plants and thereby stopped the activity of the pest which has resulted in to better growth of the plant and higher berry yield compared to other treatments under investigation. Thus, chlorantraniliprole 0.4 GR @ 15g/vine can be effective means in managing the stem borer.

Keywords: chlorantraniliprole, grape stem borer, Celosterna scrabrator, management

Procedia PDF Downloads 420
3513 Anti-Phosphorylcholine T Cell Dependent Antibody

Authors: M. M. Rahman, A. Liu, A. Frostegard, J. Frostegard

Abstract:

The human immune system plays an essential role in cardiovascular disease (CVD) and atherosclerosis. Our earlier studies showed that major immunocompetent cells including T cells are activated by phosphorylcholine epitope. Further, we have determined for the first time in a clinical cohort that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with the development of atherosclerosis and thus a low risk of cardiovascular diseases. It is still unknown whether activated T cells play a role in anti-PC production. Here we aim to clarify the role of T cells in anti-PC production. B cell alone, or with CD3 T, CD4 T or with CD8 T cells were cultured in polystyrene plates to examine anti-PC IgM production. In addition to mixed B cell with CD3 T cell culture, B cells with CD3 T cells were also cultured in transwell co-culture plates. Further, B cells alone and mixed B cell with CD3 T cell cultures with or without anti-HLA 2 antibody were cultured for 6 days. Anti-PC IgM was detected by ELISA in independent experiments. More than 8 fold higher levels of anti-PC IgM were detected by ELISA in mixed B cell with CD3 T cell cultures in comparison to B cells alone. After the co-culture of B and CD3 T cells in transwell plates, there were no increased antibody levels indicating that B and T cells need to interact to augment anti-PC IgM production. Furthermore, anti-PC IgM was abolished by anti-HLA 2 blocking antibody in mixed B and CD3 T cells culture. In addition, the lack of increased anti-PC IgM in mixed B with CD8 T cells culture and the increased levels of anti-PC in mixed B with CD4 T cells culture support the role of helper T cell for the anti-PC IgM production. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC IgM is a protection marker for atherosclerosis development. Understanding the mechanism involved in the anti-PC IgM regulation could play an important role in strategies to raise anti-PC IgM. Studies suggest that anti-PC is T-cell independent antibody, but our study shows the major role of T cell in anti-PC IgM production. Activation of helper T cells by immunization could be a possible mechanism for raising anti-PC levels.

Keywords: anti-PC, atherosclerosis, aardiovascular diseases, phosphorylcholine

Procedia PDF Downloads 316
3512 Cytotoxicity of Thymoquinone Alone or in Combination with Cisplatin (CDDP) Against Oral Squamous Cell Carcinoma in Vitro

Authors: Omar M. Al Aufi, Abdulwahab Noorwali, Ahmed Al Abd, Safia Alattas, Fathya Zahran, Fahd Almutairi

Abstract:

Cisplatin (CDDP) is a potent anticancer agent used for several tumor types. Thymoquinone (TQ) is a naturally occurring compound drawing great attention as an anticancer and chemomodulator for chemotherapies. Herein, we studied the potential cytotoxicity of thymoquinone, CDDP and their combination against human oral squamous cell carcinoma cells in contrast to normal oral epithelial cells. CDDP similarly killed both head and neck squamous cell carcinoma cells (UMSCC-14C) and normal oral epithelial cells (OEC). TQ alone exerted considerable cytotoxicity against UMSCC-14C cells, while it induced a weaker killing effect against normal oral epithelial cells (OEC). The equitoxic combination of TQ and CDDP showed additive to synergistic interaction against both UMSCC-14C and OEC cells. TQ alone increased apoptotic cell fraction in UMSCC-14C cells as early as after 6 hours. In addition, prolonged exposure of UMSCC-14C to TQ alone resulted in 96.7±1.6% total apoptosis, which was increased after combination with CDDP to 99.3±1.2% in UMSCC-14C cells. On the other hand, TQ induced a marginal increase in the apoptosis in OEC and even decreased the apoptosis induced by CDDP alone. Finally, apoptosis induction results were confirmed by the change in the expression levels of p53, Bcl-2 and Caspase-9 proteins in both UMSCC-14c and OEC cells.

Keywords: thymoquinone, cisplatin, apoptosis, oral squamous cell carcinoma, P53, Caspase-9, Bcl-2

Procedia PDF Downloads 31
3511 Homing of B Cells via Afferent Lymphatics

Authors: Sara Pereira-Nogueira, Tim Worbs, Marc Permanyer-Bosser, Reinhold Förster

Abstract:

While the entry mechanism of lymphocytes into the lymph node via the blood are well described, it is still largely unknown how cells enter lymph nodes that arrive via afferent lymphatics. In order to address this, our group has established a micro-injection technique in mice through which cells are delivered directly into the lymphatic vessel immediately afferent to the popliteal lymph node. Injected cells can then be tracked via multi-colour fluorescence or 2-photon microscopy, and their localization can be analysed within the popliteal or downstream lymph nodes by immunohistology. Since naïve B cells express the chemokine receptor CXCR5 we intra-lymphatically co-injected B cells derived from wildtype and Cxcr5-deficient mice. While CXCR5 does not play a role in guiding B cells out of the subcapsular sinus, it affects their positioning within the lymph node parenchyma, since CXCR5-deficient B cells are impaired in migrating into the B cell follicle. The knowledge obtained by studying B-cell migration may prove beneficial in clinical settings regarding tumor metastasis or autoimmune diseases.

Keywords: afferent lymphatics, B cell migration, chemokine, intra-lymphatic injection

Procedia PDF Downloads 235
3510 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses

Authors: Laura Rodriguez Amaya

Abstract:

Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.

Keywords: engineering education, geospatial technology, geovisualization, STEM

Procedia PDF Downloads 225
3509 Comparison Study of 70% Ethanol Effect on Direct and Retrival Culture of Contaminated Umblical Cord Tissue for Expansion of Mesenchymal Stem Cells

Authors: Ganeshkumar, Ashika, Valavan, Ramesh, Thangam, Chirayu

Abstract:

MSCs are found in much higher concentration in the Wharton’s jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. Umbilical cord tissue is collected at the time of birth; it is processed and stored in liquid nitrogen for future therapeutical purpose. The source of contamination might be either from vaginal tract of mother or from hospital environment or from personal handling during cord tissue sample collection. If the sample were contaminated, decontamination procedure will be done with 70% ethanol (1 minute) in order to avoid sample rejection. Ethanol is effective against a wide range of bacteria, protozoa and fungi and has low toxicity to humans. Among the 1954 samples taken for the study, 24 samples were found to be contaminated with microorganism. The organisms isolated from the positive samples were found to be E. coli, Stenotrophomonas maltophilia, Pseudomonas aueroginosa, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, Enterobacter cloacae, and Proteus mirabilis. Among these organisms 70% ethanol successfully eliminated E. coli, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, and Proteus mirabilis. 70% ethanol was unsuccessful in eliminating Stenotrophomonas maltophilia, Pseudomonas aueroginosa, and Enterobacter cloacae. Stenotrophomonas maltophilia and Pseudomonas aueroginosa have the ability to form biofilm that make them resistant to alcohol. Biofilm act as protective layer for bacteria and which protects them from host defense and antibiotic wash. Finally it was found 70% ethanol wash saved 58.3% cord tissue samples from rejection and it is ineffective against 41% of the samples. The contamination rate can be reduced by maintaining proper aseptic techniques during sample collection and processing.

Keywords: umblical cord tissue, decontamination, 70% ethanol effectiveness, contamination

Procedia PDF Downloads 318
3508 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 397
3507 Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies

Authors: Hammed Tanimowo Aiyelabegan, Oluchukwu Franklin Aladi, Mutiu Adewumi Alabi, Raliat Abimbola Aladodo, Emmanuel Oladipupo Ajani, Abdulganiyu Giwa, Esther Owolabi

Abstract:

The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules.

Keywords: diabetes mellitus, ?-amylase, ?-glucosidase, in silico, Enantia chlorantha stem bark

Procedia PDF Downloads 130
3506 IL-21 Production by CD4+ Effector T Cells and Frequency of Circulating Follicular Helper T Cells Are Increased in Type 1 Diabetes Patients

Authors: Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, Mashar M, Schuilenburg H, Walker NM, Dunger DB, Wallace C, Todd JA, Wicker LS, Pekalski ML

Abstract:

Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta cells in the pancreas. T cells are known to play an important role in this immune-mediated destruction; however, there is no general consensus regarding alterations in cytokine production or T cell subsets in peripheral blood of patients with type 1 diabetes. Using polychromatic flow cytometry of peripheral blood mononuclear cells (PBMCs), we assessed production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 by memory CD4 T effector (Teff) cells in 69 patients with type 1 diabetes and 61 healthy donors. We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). In a separate cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. Consistent with the increased production of IL-21, we also found a 14.9% increase in circulating Tfh cells in the patients with type 1 diabetes (95% CI 2.9, 26.9; p = 0.016). Analysis of IL-21 production by PBMCs from a subset of 46 of the 62 donors immunophenotyped for Tfh showed that frequency of Tfh cells was associated with the frequency of IL-21+ cells (r2 = 0.174, p = 0.004). These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.

Keywords: T follicular helper cell, IL-21, IL-17, type 1 diabetes

Procedia PDF Downloads 353
3505 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 52
3504 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 188
3503 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 426
3502 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 270
3501 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School

Authors: Saule Shazhanbayeva, Denise van der Merwe

Abstract:

Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.

Keywords: global citizen, STEM, Biology, high-school

Procedia PDF Downloads 34