Search results for: acoustic emission technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8051

Search results for: acoustic emission technique

7991 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 424
7990 Acoustic Induced Vibration Response Analysis of Honeycomb Panel

Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan

Abstract:

The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.

Keywords: vibration, acoustic, modal, honeycomb panel

Procedia PDF Downloads 534
7989 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture

Authors: D. Makuteniene

Abstract:

Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.

Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity

Procedia PDF Downloads 153
7988 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 132
7987 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 626
7986 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 38
7985 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions

Authors: G. Punithavathy

Abstract:

The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.

Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering

Procedia PDF Downloads 43
7984 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position

Procedia PDF Downloads 331
7983 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 335
7982 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 254
7981 Sliver Nanoparticles Enhanced Visible and Near Infrared Emission of Er³+ Ions Doped Lithium Tungsten Tellurite Glasses

Authors: Sachin Mahajan, Ghizal Ansari

Abstract:

TeO2-WO3-Li2O glass doped erbium ions (1mol %) and embedded silver nanoparticles( Ag NPs) has successfully been prepared by melt quenching technique and increasing the heat-treatment duration. The amorphous nature of the glass is determined by X-ray diffraction method, and the presences of silver nanoparticles are confirmed using Transmission Electron Microscopy analysis. TEM image reveals that the Ag NPs are dispersed homogeneously with average size 18 nm. From the UV-Vis absorption spectra, the surface plasmon resonance (SPR) peaks are detected at 550 and 578 nm. Under 980 nm excitation wavelengths, enhancement of red upconversion fluorescence and near-infrared broadband emission around 1550nm of Er3+ ions doped tellurite glasses containing Ag NPs have been observed. The observed enhancement of Er3+ emission is mainly attributed to the local field effects of Ag NPs causes an intensified electromagnetic field around NPs. For observed enhancement involved mechanisms are discussed.

Keywords: erbium ions, silver nanoparticle, surface plasmon resonance, upconversion emission

Procedia PDF Downloads 563
7980 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm

Authors: G. Bhushan, S. Dhingra, K. K. Dubey

Abstract:

This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.

Keywords: genetic algorithm, rsm, biodiesel, karanja

Procedia PDF Downloads 281
7979 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 147
7978 Classification of Traffic Complex Acoustic Space

Authors: Bin Wang, Jian Kang

Abstract:

After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.

Keywords: soundscape, traffic complex, cluster analysis, classification

Procedia PDF Downloads 224
7977 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion

Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta

Abstract:

This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.

Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion

Procedia PDF Downloads 460
7976 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions

Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel

Abstract:

This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.

Keywords: acoustic emissions, particle sizing, process monitoring, signal processing

Procedia PDF Downloads 323
7975 Study of Nanocrystalline Scintillator for Alpha Particles Detection

Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi

Abstract:

We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.

Keywords: nanoparticles, luminescence, sol gel, scintillator

Procedia PDF Downloads 565
7974 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 360
7973 Environmental, Climate Change, and Health Outcomes in the World

Authors: Felix Aberu

Abstract:

The high rate of greenhouse gas (CO₂) emission and increased concentration of Carbon Dioxide in the atmosphere are not unconnected to both human and natural activities. This has caused climate change and global warming in the world. The adverse effect of these climatic changes has no doubt threatened human existence. Hence, this study examined the effects of environmental and climate influence on mortality and morbidity rates, with particular reference to the world’s leading CO₂ emission countries, using both the pre-estimation, estimation, and post-estimation techniques for more dependable outcomes. Hence, the System Generalized Method of Moments (SGMM) was adopted as the main estimation technique for the data analysis from 1996 to 2023. The coefficient of carbon emissions confirmed a positive and significant relationship among CO₂ emission, mortality, and morbidity rates in the world’s leading CO₂ emissions countries, which implies that carbon emission has contributed to mortality and morbidity rates in the world. Therefore, significant action should be taken to facilitate the expansion of environmental protection and sustainability initiatives in any CO₂ emissions nations of the world.

Keywords: environmental, mortality, morbidity, health outcomes, carbon emissions

Procedia PDF Downloads 18
7972 Design and Evaluation on Sierpinski-Triangle Acoustic Diffusers Based on Fractal Theory

Authors: Lingge Tan, Hongpeng Xu, Jieun Yang, Maarten Hornikx

Abstract:

Acoustic diffusers are important components in enhancing the quality of room acoustics. This paper provides a type of modular diffuser based on the Sierpinski Triangle of the plane and combines it with fractal theory to expand the effective frequency range. In numerical calculations and full-scale model experiments, the effect of fractal design elements on normal-incidence diffusion coefficients is examined. It is demonstrated the reasonable times of iteration of modules is three, and the coverage density is 58.4% in the design frequency from 125Hz to 4kHz.

Keywords: acoustic diffuser, fractal, Sierpinski-triangle, diffusion coefficient

Procedia PDF Downloads 122
7971 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions

Procedia PDF Downloads 250
7970 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors

Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung

Abstract:

The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.

Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling

Procedia PDF Downloads 536
7969 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities

Authors: M. Mourad, K. Mahmoud

Abstract:

Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.

Keywords: electrification strategy, hybrid electric vehicle, driving cycle, CO2 emission

Procedia PDF Downloads 406
7968 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 282
7967 Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma

Authors: S. K. Jain, M. K. Mishra

Abstract:

Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth.

Keywords: ion-acoustic solitons, Korteweg-de Vries (KdV) equation, magnetized electron-positron-ion (EPI) plasma, reductive perturbation method

Procedia PDF Downloads 258
7966 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks

Authors: Dongwon Lee, Sunmyeng Kim

Abstract:

Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.

Keywords: acoustic channel, MAC, temporal reuse, UAN

Procedia PDF Downloads 320
7965 Investigation on the Performance of Biodiesel and Natural Gas-Fuelled Diesel Engines for Shipboard Application

Authors: Kelvin Datonye Bob-Manuel

Abstract:

The shipping industry has begun to seriously look at ways of reducing fossil fuel consumption so that current reserves can last longer and operate their ships in a more environmentally friendly way. The concept of Green Shipping or Sustainable Shipping with the use of alternative fuels is now becoming an important issue for ship owners, shipping lines and ship builders globally. This paper provides a critical review of the performance of biodiesel and natural gas-fuelled diesel engines for shipboard application. The emission reduction technique included the use of either neat or emulsified rapeseed methyl ester (RME) for pilot ignition and the emission of NOx, CO2 and SOx were measured at engine speed range of 500 - 1500 r/min. The NOx concentrations were compared with the regulated IMO MARPOL73/78, Annex VI, Tiers I, II, III and United States Environmental Protection Agency (US-EPA) standard. All NOx emissions met Tier I and II levels and the EPA standard for the minimum specification of category 1 engines at higher speed but none met the MARPOL Tier III limit which is for designated Emission Control Areas (ECAs). No trace of soot and SOx emission were observed.

Keywords: dual-fuel, biodiesel, natural gas, NOx, SOx, MARPOL 73/78 Annex VI. USEPA Tier 3, EURO V &VI

Procedia PDF Downloads 384
7964 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 274
7963 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: speaker identification, acoustic-spectrographic method, non-native speech, performance evaluation

Procedia PDF Downloads 418
7962 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 266