Search results for: accelerating admixture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 263

Search results for: accelerating admixture

263 Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture

Authors: A. H. Yehia, M. M. Rashwan, K. A. Assaf, K. Abd el Samee

Abstract:

The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.

Keywords: deflection, modulus of elasticity, non-traditional admixture, recycled concrete aggregate, strain, toughness, under and over reinforcement

Procedia PDF Downloads 460
262 Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns

Authors: K. Raza, S. Gul, M. Ali

Abstract:

Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete.

Keywords: bio-based admixture, Bacillus subtilis, calcium lactate, compressive strength

Procedia PDF Downloads 223
261 Temperature and Admixtures Effects on the Maturity of Normal and Super Fine Ground Granulated Blast Furnace Slag Mortars for the Precast Concrete Industry

Authors: Matthew Cruickshank, Chaaruchandra Korde, Roger P. West, John Reddy

Abstract:

Precast concrete element exports are growing in importance in Ireland’s concrete industry and with the increased global focus on reducing carbon emissions, the industry is exploring more sustainable alternatives such as using ground granulated blast-furnace slag (GGBS) as a partial replacement of Portland cement. It is well established that GGBS, with low early age strength development, has limited use in precast manufacturing due to the need for early de-moulding, cutting of pre-stressed strands and lifting. In this dichotomy, the effects of temperature, admixture, are explored to try to achieve the required very early age strength. Testing of the strength of mortars is mandated in the European cement standard, so here with 50% GGBS and Super Fine GGBS, with three admixture conditions (none, conventional accelerator, novel accelerator) and two early age curing temperature conditions (20°C and 35°C), standard mortar strengths are measured at six ages (16 hours, 1, 2, 3, 7, 28 days). The present paper will describe the effort towards developing maturity curves to aid in understanding the effect of these accelerating admixtures and GGBS fineness on slag cement mortars, allowing prediction of their strength with time and temperature. This study is of particular importance to the precast industry where concrete temperature can be controlled. For the climatic conditions in Ireland, heating of precast beds for long hours will amount to an additional cost and also contribute to the carbon footprint of the products. When transitioned from mortar to concrete, these maturity curves are expected to play a vital role in predicting the strength of the GGBS concrete at a very early age prior to demoulding.

Keywords: accelerating admixture, early age strength, ground granulated blast-furnace slag, GGBS, maturity, precast concrete

Procedia PDF Downloads 157
260 Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures

Authors: N. Tabatadze

Abstract:

The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: hydraulic concrete, alkali-silica reaction, water absorption, water-resistance

Procedia PDF Downloads 349
259 A Study on the Possibility of Utilizing the Converter Slag as the Cement Admixture

Authors: Choi Woo-Seok, Kim Eun-Sup, Ha Eun-Ryong

Abstract:

Converter slag is used as a low-value product like a construction fill material and soil stabilizer unlike electric furnace slag and blast furnace slag. This study is fundamental research for utilizing the converter slag as the cement admixture. Magnetic separation was conducted for quality improvement of the converter slag, and it was classified according to into 3 types; SA: pure slag, SB: separated slag, SC: remained slag after separating. In XRF result, SB slag was Fe₂CO₃ ratio was higher, and CaO ratio was lower than SA. SC slag was Fe₂CO₃ ratio was lower, and CaO ratio was higher than SA. In compressive strength test for soil cement using SA, SB, SC as the cement admixture, SC slag was more effective in terms of 28days compressive strength than SA, SB slag. In this result, it is considered that the remained material (SC) after magnetic separation is available as the cement admixture.

Keywords: converter slag, magnetic separation, cement admixture, compressive strength

Procedia PDF Downloads 783
258 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 318
257 Effect of Mineral Admixture on Self-Healing Performance in Concrete

Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung

Abstract:

Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.

Keywords: mineral admixture, self-healing, water flow test, crystallization

Procedia PDF Downloads 366
256 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture

Authors: T. S. Ramesh Babu, D. Neeraja

Abstract:

This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.

Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight

Procedia PDF Downloads 288
255 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Mbugua R. N., Salim R. W., Ndambuki J. M.

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3\% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture

Procedia PDF Downloads 311
254 A Theoretical Study of Accelerating Neutrons in LINAC Using Magnetic Gradient Method

Authors: Chunduru Amareswara Prasad

Abstract:

The main aim of this proposal it to reveal the secrets of the universe by accelerating neutrons. The proposal idea in its abridged version speaks about the possibility of making neutrons accelerate with help of thermal energy and magnetic energy under controlled conditions. Which is helpful in revealing the hidden secrets of the universe namely dark energy and in finding properties of Higgs boson. The paper mainly speaks about accelerating neutrons to near velocity of light in a LINAC, using magnetic energy by magnetic pressurizers. The center of mass energy of two colliding neutron beams is 94 GeV (~0.5c) can be achieved using this method. The conventional ways to accelerate neutrons has some constraints in accelerating them electromagnetically as they need to be separated from the Tritium or Deuterium nuclei. This magnetic gradient method provides efficient and simple way to accelerate neutrons.

Keywords: neutron, acceleration, thermal energy, magnetic energy, Higgs boson

Procedia PDF Downloads 325
253 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: concrete, mineral admixture, hydration, structure

Procedia PDF Downloads 326
252 Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete

Authors: Kwabena A. Boakye, Eugene Atiemo, Trinity A. Tagbor, Delali Adjei

Abstract:

The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete.

Keywords: admixture, granite dust, permeability, pozzolans

Procedia PDF Downloads 158
251 Effect of Permeability Reducing Admixture Utilization on Sulfate Resistance of Self-Consolidating Concrete Mixture

Authors: Ali Mardani-Aghabaglou, Zia Ahmad Faqiri, Semsi Yazici

Abstract:

In this study, the effect of permeability reducing admixture (PRA) utilization on fresh properties, compressive strength and sulfate resistance of self-consolidating concrete (SSC) were investigated. For this aim, two different commercial PRA were used at two utilization ratios as %0.1 and %0.2 wt. CEM I 42.5 R type cement and crushed limestone aggregate having Dmax of 15 mm were used for preparing of SCC mixtures. In all mixtures, cement content, water/cement ratio, and flow value were kept constant as 450 kg, 0.40 and 65 ± 2 cm, respectively. In order to obtain desired flow value, a polycarboxylate ether-based high range water reducing admixture was used at different content. T50 flow time, flow value, L-box, and U-funnel of SCC mixture were measured as fresh properties. 1, 3, 7 and 28-day compressive strength of SCC mixture were obtained on 150 mm cubic specimens. To investigate the sulfate resistance of SCC mixture 75x75x285 mm prismatic specimens were produced. After 28-day water curing, specimens were immersed in %5 sodium sulfate solution during 210 days. The length change of specimens was measured at 5-day time intervals up to 210 days. According to the test results, all fresh properties of SCC mixtures were in accordance with the European federation of specialist construction chemicals and concrete systems (EFNARC) critter for SCC mixtures. The utilization of PRA had no significant effect on compressive strength and fresh properties of SCC mixtures. Regardless of PRA type, sulfate resistance of SCC mixture increased by adding of PRA into the SCC mixtures. The length changes of the SCC mixtures containing %1 and %2 PRA were measured as %8 and %14 less than that of control mixture containing no PRA, respectively.

Keywords: permeability reducing admixture, self-consolidating concrete, fresh properties, sulfate resistance

Procedia PDF Downloads 157
250 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 474
249 Evaluation of Properties of Alkali Activated Slag Concrete Blended with Polypropylene Shredding and Admixture

Authors: Jagannath Prasad Tegar, Zeeshan Ahmad

Abstract:

The Ordinary Portland Cement (OPC) is a major constituent of concrete, which is being used extensively since last half century. The production of cement is impacting not only environment alone, but depleting natural materials. During the past 3 decades, the scholars have carried out studies and researches to explore the supplementary cementatious materials such as Ground granulated Blast furnace slag (GGBFS), silica fumes (SF), metakaolin or fly ash (FA). This has contributed towards improved cementatious materials which are being used in construction, but not the way it is supposed to be. The alkali activated slag concrete is another innovation which has constituents of cementatious materials like Ground Granuled Blast Furnace Slag (GGBFS), Fly Ash (FA), Silica Fumes (SF) or Metakaolin. Alkaline activators like Sodium Silicate (Na₂SiO₃) and Sodium Hydroxide (NaOH) is utilized. In view of evaluating properties of alkali activated slag concrete blended with polypropylene shredding and accelerator, research study is being carried out. This research study is proposed to evaluate the effect of polypropylene shredding and accelerating admixture on mechanical properties of alkali-activated slag concrete. The mechanical properties include the compressive strength, splitting tensile strength and workability. The outcomes of this research are matched with the hypothesis and it is found that 27% of cement can be replaced with the ground granulated blast furnace slag (GGBFS) and for split tensile strength 20% replacement is achieved. Overall it is found that 20% of cement can be replaced with ground granulated blast furnace slag. The tests conducted in the laboratory for evaluating properties such as compressive strength test, split tensile strength test, and slump cone test. On the aspect of cost, it is substantially benefitted.

Keywords: ordinary Portland cement, activated slag concrete, ground granule blast furnace slag, fly ash, silica fumes

Procedia PDF Downloads 176
248 Possibilities of Utilization Zeolite in Concrete

Authors: M. Sedlmajer, J. Zach, J. Hroudova, P. Rovnaníkova

Abstract:

There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days.

Keywords: concrete, zeolite, compressive strength, modulus of elasticity, durability

Procedia PDF Downloads 367
247 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios

Procedia PDF Downloads 136
246 Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete

Authors: Muhammad Nura Isa, Magaji Muhammad Garba, Dauda Dahiru Danwata

Abstract:

A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete.

Keywords: locally made effective microorganisms, compressive strength, admixture, fruits and vegetable wastes

Procedia PDF Downloads 342
245 Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars

Authors: Nikol Žižková

Abstract:

The aim of this study was to observe the behavior of polymer-modified cement mortars with regard to the use of a pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse.

Keywords: recycled waste glass, polymer-modified mortars, pozzolanic admixture, ethylene/vinyl acetate copolymer

Procedia PDF Downloads 253
244 Introgressive Hybridisation between Two Widespread Sharks in the East Pacific Region

Authors: Diana A. Pazmino, Lynne vanHerwerden, Colin A. Simpfendorfer, Claudia Junge, Stephen C. Donnellan, Mauricio Hoyos-Padilla, Clinton A. J. Duffy, Charlie Huveneers, Bronwyn Gillanders, Paul A. Butcher, Gregory E. Maes

Abstract:

With just a handful of documented cases of hybridisation in cartilaginous fishes, shark hybridisation remains poorly investigated. Small amounts of admixture have been detected between Galapagos (Carcharhinus galapagensis) and dusky (Carcharhinus obscurus) sharks previously, generating a hypothesis of ongoing hybridisation. We sampled a large number of individuals from areas where both species co-occur (contact zones) across the Pacific Ocean and used both mitochondrial and nuclear-encoded SNPs to examine genetic admixture and introgression between the two species. Using empirical, analytical approaches and simulations, we first developed a set of 1,873 highly informative and reliable diagnostic SNPs for these two species to evaluate the degree of admixture between them. Overall, results indicate a high discriminatory power of nuclear SNPs (FST=0.47, p < 0.05) between the two species, unlike mitochondrial DNA (ΦST = 0.00 p > 0.05), which failed to differentiate between these species. We identified four hybrid individuals (~1%) and detected bi-directional introgression between C. galapagensis and C. obscurus in the Gulf of California along the eastern Pacific coast of the Americas. We emphasize the importance of including a combination of mtDNA and diagnostic nuclear markers to properly assess species identification, detect patterns of hybridisation, and better inform management and conservation of these sharks, especially given the morphological similarities within the genus Carcharhinus.

Keywords: elasmobranchs, single nucleotide polymorphisms, hybridisation, introgression, misidentification

Procedia PDF Downloads 194
243 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 144
242 Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture

Authors: Kyong-Ku Yun, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han, Pan-Gil Choi

Abstract:

Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%.

Keywords: sprayed concrete, durability, early-age behavior, expansion admixture

Procedia PDF Downloads 506
241 Utilization of Waste Marble Dust as a Viscosity Modifying Agent in Self Compacting Concrete

Authors: Shams Ul Khaliq, Mushtaq Zeb, Fawad Bilal, Faizan Akbar, Syed Aamir Abbas

Abstract:

Self Compacting Concrete as the name implies--is the concrete requiring a very little or no vibration to fill the form homogeneously. Self Compacting Concrete (SCC) is defined by two primary properties: Ability to flow or deform under its own weight (with or without obstructions) and the ability to remain homogeneous while doing so. Flow ability is achieved by utilizing high range water reducing admixtures and segregation resistance is ensured by introducing a chemical viscosity modifying admixture (VMA) or increasing the amount of fines in the concrete. The study explores the use waste marble dust (WMD) to increase the amount of fines and hence achieve self-compatibility in an economical way, suitable for Pakistani construction industry. The study focuses on comparison of fresh properties of SCC containing varying amounts of waste marble dust (WMD) with that containing commercially available viscosity modifying admixture. The comparison is done at different dosages of super plasticizer keeping cement, water, coarse aggregate, and fine aggregate contents constant.

Keywords: self compacting concrete, waste marble dust (WMD), flow ability, segregation resistance

Procedia PDF Downloads 326
240 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 364
239 Properties of Modified Dry Masonry Mixtures for Effective Masonry Units

Authors: Vyacheslav S. Semenov, Tamara A. Rozovskaya

Abstract:

The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested.

Keywords: dry mortar mixtures, light-weight dry mixtures, hollow ceramics microspheres, masonry mortars, “warm” mortars, air-entraining admixture, redispersible polymer powders

Procedia PDF Downloads 505
238 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite

Authors: Danuta Barnat-Hunek

Abstract:

The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.

Keywords: hydrophobisation, mortars, salt crystallization, frost resistance

Procedia PDF Downloads 210
237 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: recycled aggregate, permeable concrete, compressive strength, permeability

Procedia PDF Downloads 223
236 Modelling the Effect of Alcohol Consumption on the Accelerating and Braking Behaviour of Drivers

Authors: Ankit Kumar Yadav, Nagendra R. Velaga

Abstract:

Driving under the influence of alcohol impairs the driving performance and increases the crash risks worldwide. The present study investigated the effect of different Blood Alcohol Concentrations (BAC) on the accelerating and braking behaviour of drivers with the help of driving simulator experiments. Eighty-two licensed Indian drivers drove on the rural road environment designed in the driving simulator at BAC levels of 0.00%, 0.03%, 0.05%, and 0.08% respectively. Driving performance was analysed with the help of vehicle control performance indicators such as mean acceleration and mean brake pedal force of the participants. Preliminary analysis reported an increase in mean acceleration and mean brake pedal force with increasing BAC levels. Generalized linear mixed models were developed to quantify the effect of different alcohol levels and explanatory variables such as driver’s age, gender and other driver characteristic variables on the driving performance indicators. Alcohol use was reported as a significant factor affecting the accelerating and braking performance of the drivers. The acceleration model results indicated that mean acceleration of the drivers increased by 0.013 m/s², 0.026 m/s² and 0.027 m/s² for the BAC levels of 0.03%, 0.05% and 0.08% respectively. Results of the brake pedal force model reported that mean brake pedal force of the drivers increased by 1.09 N, 1.32 N and 1.44 N for the BAC levels of 0.03%, 0.05% and 0.08% respectively. Age was a significant factor in both the models where one year increase in drivers’ age resulted in 0.2% reduction in mean acceleration and 19% reduction in mean brake pedal force of the drivers. It shows that driving experience could compensate for the negative effects of alcohol to some extent while driving. Female drivers were found to accelerate slower and brake harder as compared to the male drivers which confirmed that female drivers are more conscious about their safety while driving. It was observed that drivers who were regular exercisers had better control on their accelerator pedal as compared to the non-regular exercisers during drunken driving. The findings of the present study revealed that drivers tend to be more aggressive and impulsive under the influence of alcohol which deteriorates their driving performance. Drunk driving state can be differentiated from sober driving state by observing the accelerating and braking behaviour of the drivers. The conclusions may provide reference in making countermeasures against drinking and driving and contribute to traffic safety.

Keywords: alcohol, acceleration, braking behaviour, driving simulator

Procedia PDF Downloads 144
235 Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength

Authors: Olivia Anak Rayeg, Clotilda Binti Petrus, Arnel Reanturco Ascotia, Ang Chung Huap, Caroline Marajan, Rudy Tawie Joseph Sipi

Abstract:

Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology.

Keywords: concrete rheology, green admixture, fungal biosurfactant, phospholipids, rhizopus oryzae

Procedia PDF Downloads 42
234 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete

Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim

Abstract:

Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.

Keywords: high strength concrete, mineral admixture, fire resistance, social disaster

Procedia PDF Downloads 144