Search results for: Transformation Generated Force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6828

Search results for: Transformation Generated Force

6588 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 120
6587 Values Education in Military Schools and Işıklar Air Force High School Sample

Authors: Mehmet Eren Çelik

Abstract:

Values are notions that help people to decide what is good or not and to direct their attitude. Teaching values has always been very important throughout the history. Values should be thought in younger ages to get more efficiency. Therefore military schools are the last stop to learn values effectively. That’s why values education in military schools has vital importance. In this study the military side of values education is examined. The purpose of the study is to show how important values education is and why military students need values education. First of all what value is and what values education means is clearly explained and values education in schools and specifically in military schools is stated. Then values education in Işıklar Air Force High School exemplifies the given information.

Keywords: Işıklar Air Force High School, military school, values, values education

Procedia PDF Downloads 356
6586 Case Study of Gender Mainstreaming in Rand Water: A Journey of Transformation

Authors: Saki Makume

Abstract:

Misogyny is a serious problem in the world that is predominantly patriarchal. South Africa is a very unequal society, so are the companies in this country. After 1994, laws were promulgated to outlaw unfair discrimination, amongst them discrimination based on gender. The presentation aims to share the experiences and learnings of Rand Water through its transformation journey. The environment was so hostile to women in the workplace that policies and practices excluded or unfairly discriminated against women. The paper will be in the form of a case study, predominantly qualitative and to a lesser extent quantitative. The results will show that the number of women at Board, Executive and Management levels have increased; and policies amended to be gender sensitive. Policies were developed that specifically protected women’s rights e.g. sexual harassment. A program like TechnoGirl was introduced to lure girl learners to Rand Water.

Keywords: gender mainstreaming, policies, transformation, unfair discrimination

Procedia PDF Downloads 247
6585 Defuzzification of Periodic Membership Function on Circular Coordinates

Authors: Takashi Mitsuishi, Koji Saigusa

Abstract:

This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.

Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates

Procedia PDF Downloads 278
6584 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 364
6583 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the model as previously done in simulation for squat exercise. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from the motion capture of an exerciser during a seated row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the actively controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: control, counterweight, isolation, vibration.

Procedia PDF Downloads 114
6582 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 132
6581 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load

Procedia PDF Downloads 298
6580 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 105
6579 Sound Exposure Effects towards Ross Broilers Growth Rate

Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak

Abstract:

Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39). Group B showed a higher mean weight on Day 24 (1.441±0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p< 0.05). However, there was no significant (p> 0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.

Keywords: broilers, sound, shear force, weight

Procedia PDF Downloads 390
6578 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters

Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea

Abstract:

Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.

Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density

Procedia PDF Downloads 137
6577 Manipulator Development for Telediagnostics

Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania

Abstract:

This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.

Keywords: telediagnostics, elastic manipulator, impedance control, force measurement

Procedia PDF Downloads 448
6576 Leasing Revisited: Mastering the Digital Transformation with Traditional Financing

Authors: Tobias Huttche, Marco Canipa-Valdez, Corinne Mühlebach

Abstract:

This article discusses the role of leasing on the digital transformation process of companies and corresponding economic effects. Based on the traditional mechanisms of leasing, this article focuses in particular on the benefits of leasing as financing instrument with regard to the innovation potential of companies. Practical examples demonstrate how leasing can become an integral part of new business models. Especially, with regard to the digital transformation and corresponding investments in know-how and infrastructure, leasing can play an important role. Furthermore, findings of an empirical survey are presented dealing with the usage of leasing in Switzerland in an international context. The survey shows not only the benefits of leasing against the backdrop of digital transformation but gives guidance on how other countries can benefit from promoting leasing in their legislation and economy. Based on a simulation model for Switzerland, the economic effect of an increase in leasing volume is being calculated. Again, the respective results underline the substantial growth potential. This holds true especially for economies where asset-based lending is rarely used because of a lack of entrepreneurial or private security of the borrower (cash-based financing for developing and emerging countries). Overall, the authors found that leasing using companies are more productive and tend to grow faster than companies using less or none leasing. The positive effects of leasing on emerging digital challenges for companies and entire economies should encourage other countries to facilitate access to leasing as financing instrument by decreasing legal-, tax- and accounting-related requirements in the respective jurisdiction.

Keywords: Cash-Based financing, digital transformation, financing instruments, growth, innovation, leasing

Procedia PDF Downloads 230
6575 The Effect of Tip Parameters on Vibration Modes of Atomic Force Microscope Cantilever

Authors: Mehdi Shekarzadeh, Pejman Taghipour Birgani

Abstract:

In this paper, the effect of mass and height of tip on the flexural vibration modes of an atomic force microscope (AFM) rectangular cantilever is analyzed. A closed-form expression for the sensitivity of vibration modes is derived using the relationship between the resonant frequency and contact stiffness of cantilever and sample. Each mode has a different sensitivity to variations in surface stiffness. This sensitivity directly controls the image resolution. It is obtained an AFM cantilever is more sensitive when the mass of tip is lower and the first mode is the most sensitive mode. Also, the effect of changes of tip height on the flexural sensitivity is negligible.

Keywords: atomic force microscope, AFM, vibration analysis, flexural vibration, cantilever

Procedia PDF Downloads 358
6574 Urban Life on the Go: Urban Transformation of Public Space

Authors: E. Zippelius

Abstract:

Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.

Keywords: production of space, public space, urban life, urban transformation

Procedia PDF Downloads 112
6573 Shock Isolation Performance of a Pre-Compressed Large Deformation Shock Isolator with Quasi-Zero-Stiffness Characteristic

Authors: Ji Chen, Chunhui Zhang, Fanming Zeng, Lei Zhang, Ying Li, Wei Zhang

Abstract:

Based on the synthetic principle of force, a pre-compressed nonlinear isolator with quasi-zero-stiffness (QZS) is developed for shock isolation of ship equipment. The proposed isolator consists of a vertical spring with positive stiffness and several lateral springs with negative stiffness. An analytical expression of vertical stiffness of the nonlinear isolator is derived and numerical simulation on the effect of the geometric design parameters is carried out. Besides, a pre-compressed QZS shock isolation system model is established. The stiffness characteristic of the system is studied and the effects of excitation amplitude and friction damping on shock isolation performance are discussed respectively. The research results show that in comparison with linear shock isolation system, the pre-compressed QZS shock isolation system could realize constant-force or approximately constant-force function and perform better anti-impact performance.

Keywords: quasi-zero-stiffness, constant-force, pre-compressed, large deformation, shock isolation, friction damping

Procedia PDF Downloads 648
6572 The Impact of Digital Transformation on the Construction Industry in Kuwait

Authors: M. Aladwani, Y. Alarfaj

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: BIM, digital construction, construction technologies, digital transformation

Procedia PDF Downloads 55
6571 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 47
6570 The Impact of Brand-Related User-Generated Content on Brand Positioning: A Study on Private Higher Education Institutes in Vietnam

Authors: Charitha Harshani Perera, Rajkishore Nayak, Long Thang Van Nguyen

Abstract:

With the advent of social media, Vietnam has changed the way customers perceive the information about the brand. In the context of higher education, the adoption of social media has received attention with the increasing rate of social media usage among undergraduates. Brand-related user-generated content (UGC) on social media emphasizes the social ties between users and users’ participation, which promotes the communication to build and maintain the relationship with the brands. Although brand positioning offers a significant competitive advantage, the association with brand-related user-generated content in social media with brand positioning in the context of higher education is still an under-researched area. Accordingly, using social identity theory and social exchange theory, this research aims to deepen our understanding of the influence of brand-related user-generated content on brand positioning and purchase intention. Employing a quantitative survey design,384 Vietnamese undergraduates were selected based on purposive sampling. The findings suggest that brand-related user-generated content influence brand positioning and brand choice intention. However, there is a significant mediating effect of the reliability and understandability of the content.

Keywords: brand positioning, brand-related user-generated content, emerging countries, higher education

Procedia PDF Downloads 142
6569 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 284
6568 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic

Authors: Sedat Yayla, Azhin Abdullah

Abstract:

In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.

Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)

Procedia PDF Downloads 242
6567 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease

Authors: Mehdi Razeghi

Abstract:

Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.

Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering

Procedia PDF Downloads 48
6566 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 320
6565 Biomechanical Evaluation of the Chronic Stroke with 3D-Printed Hand Device

Authors: Chen-Sheng Chen, Tsung-Yi Huang, Pi-Chang Sun

Abstract:

Chronic stroke patients often have complaints about hand dysfunction due to flexor hypertonia and extensor weakness, which makes it difficult to open their affected hand for functional grasp. Hand rehabilitation after stroke is essential for restoring functional independence. Constraint-induced movement therapy has shown to be a successful treatment for patients who have acquired certain level of wrist and finger extension. The goal of this study was to investigate the feasibility of task-oriented approach incorporating 3D-printed dynamic hand device by evaluating hand functional performance. This study manufactured a hand device using 3d printer for chronic stroke. The experimental group engaged task-oriented approach with dynamic hand device, but the control group only received task-oriented approach. Outcome measurements include palmar pinch force (PPF), lateral pinch force (LPF), grip force (GF), and Box and Blocks Test (BBT). The results of study revealed the improvement of PPF in experimental group but not in control group. Meanwhile, improvement in LPF, GF and BBT can be found in both groups. This study demonstrates that the 3D-printed dynamic hand device is an effective therapeutic assistive device to improve pinch force, grasp force, and dexterity and facilitate motivation during home program in individuals with chronic stroke.

Keywords: 3D printing, biomechanics, hand orthosis, stroke

Procedia PDF Downloads 238
6564 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: Morteza Malek Yarand, Hadi Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon

Procedia PDF Downloads 248
6563 Influence of Replacement used Reference Coordinate System for Georeferencing of the Old Map of Europe

Authors: Jakub Havlicek, Jiri Cajthaml

Abstract:

The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. In particular, it was the map entitled “Europe, the Map of Rivers and Mountains on a 1 : 12 000 000 Scale”, elaborated by professor D. Cipera and Dr. J. Metelka for Otto’s Geographic Atlas of 1924. The work was most likely produced using the equal-area conic (Albers) projection. The map was georeferenced into three types of projection – the equal-area conic, cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation.

Keywords: georeferencing, reference coordinate system, transformation, standard deviation

Procedia PDF Downloads 306
6562 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 306
6561 Research on the Transformation of Bottom Space in the Teaching Area of Zijingang Campus, Zhejiang University

Authors: Jia Xu

Abstract:

There is a lot of bottom space in the teaching area of Zijingang Campus of Zhejiang University, which benefits to the ventilation, heat dissipation, circulation, partition of quiet and noisy areas and diversification of spaces. Hangzhou is hot in summer but cold in winter, so teachers and students spend much less time in the bottom space of buildings in winter than in summer. Recently, depending on the teachers and students’ proposals, the school transformed the bottom space in the teaching area to provide space for relaxing, chatting and staying in winter. Surveying and analyzing the existing ways to transform, the paper researches deeply on the transformation projects of bottom space in the teaching buildings. It is believed that this paper can be a salutary lesson to make the bottom space in the teaching areas of universities richer and bring more diverse activities for teachers and students.

Keywords: bottom space, teaching area, transformation, Zijingang Campus of Zhejiang University

Procedia PDF Downloads 366
6560 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis

Procedia PDF Downloads 387
6559 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 276