Search results for: Organic Rankine Cycle (ORC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4296

Search results for: Organic Rankine Cycle (ORC)

4116 Quality of So-Called Organic Fertilizers in Vietnam's Market

Authors: Hoang Thi Quynh, Shima Kazuto

Abstract:

Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam.

Keywords: inorganic N, mineralization, N efficiency, so-called organic fertilizers, Vietnam’s market

Procedia PDF Downloads 145
4115 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 452
4114 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 391
4113 Design and Synthesis of Gradient Nanocomposite Materials

Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way

Abstract:

Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.

Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic

Procedia PDF Downloads 472
4112 Energy Potential of Organic Fraction of Municipal Solid Waste - Colombian Housing

Authors: Esteban Hincapie

Abstract:

The growing climate change, global warming and population growth have contributed to the energy crisis, aggravated by the generation of organic solid waste, as a material with high energy potential. From the context of waste generation in the Metropolitan Area of the Aburrá Valley, was evaluated the potential of energy content in organic solid waste generated in La Herradura housing complex, through anaerobic digestion process in batch reactors, with mixtures of substrate, water and inoculum 1: 3: 0.2 and 1: 3: 0, reaching a total biogas production of 0,2 m³/Kg y 0,14 m³/Kg respectively, in a period of 38 days under temperature conditions of 24°C. The volume of biogas obtained was equivalent to the monthly consumption of natural gas for 75 apartments or 1.856 Kw of electric power. For the Metropolitan Area of the Aburrá Valley, a production of 7.152Kw of electric power was estimated for a month, from the treatment of 22.319 tons of organic solid waste that would not be taken to the landfill. The results indicate that the treatment of organic waste from anaerobic digestion is a sustainable option to reduce pollution, contribute to the production of alternative energies and improve the efficiency of urban metabolism.

Keywords: alternative energies, anaerobic digestion, solid waste, sustainable construction, urban metabolism, waste management

Procedia PDF Downloads 136
4111 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene

Authors: Yingqian Chen, Sergei Manzhos

Abstract:

Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.

Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes

Procedia PDF Downloads 602
4110 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 264
4109 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 198
4108 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process

Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani

Abstract:

Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.

Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture

Procedia PDF Downloads 27
4107 Defect Management Life Cycle Process for Software Quality Improvement

Authors: Aedah Abd Rahman, Nurdatillah Hasim

Abstract:

Software quality issues require special attention especially in view of the demands of quality software product to meet customer satisfaction. Software development projects in most organisations need proper defect management process in order to produce high quality software product and reduce the number of defects. The research question of this study is how to produce high quality software and reducing the number of defects. Therefore, the objective of this paper is to provide a framework for managing software defects by following defined life cycle processes. The methodology starts by reviewing defects, defect models, best practices and standards. A framework for defect management life cycle is proposed. The major contribution of this study is to define a defect management road map in software development. The adoption of an effective defect management process helps to achieve the ultimate goal of producing high quality software products and contributes towards continuous software process improvement.

Keywords: defects, defect management, life cycle process, software quality

Procedia PDF Downloads 273
4106 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects

Authors: Ayedh Alqahtani, Andrew Whyte

Abstract:

Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.

Keywords: building projects, capital cost, life cycle cost, maintenance costs, operation costs

Procedia PDF Downloads 520
4105 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 309
4104 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering

Procedia PDF Downloads 317
4103 Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: Polyoxometalate, Keggin, Organic-inorganic salt, TMV

Procedia PDF Downloads 261
4102 Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 392
4101 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 335
4100 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 433
4099 A Social Life Cycle Assessment Framework to Achieve Sustainable Cultural Tourism Destinations

Authors: Mojtaba Javdan, Kamran Jafarpour Ghalehteimouri, Moslem Ghasemi, Arezu Riazi

Abstract:

Tourism has a huge multiplier effect on other socioeconomic sectors, resulting in better infrastructure and public services. However, its environmental impact is still a source of concern. As a result, a greater emphasis has been placed on improving the sustainability of tourist destinations. Despite the global significance of sustainability assessment, only a few widely accepted methods for measuring sustainability exist. As a result, the life cycle concept is used to evaluate environmental, economic, and social consequences. The Social Life Cycle Assessment (S-LCA) is a crucial life cycle tool. Due to the tourism-specific service specifications, tourism-related activities are well-suited for the elaboration of data related to social sustainability. Therefore, the possibility of how the S-LCA is involved in ensuring cultural tourism destinations' long-term viability can be the main question. To answer this question, this article examines the theoretical evolution of both the S-LCA and cultural tourism. Potential application gaps are investigated, and an S-LCA framework for sustainable cultural tourism destinations is proposed and discussed. Thus, by bringing all stakeholders' interests together, the proposed S-LCA conceptual framework can play an effective role in achieving the principles and objectives of sustainable tourism destination management.

Keywords: social life cycle assessment, sustainable cultural tourism destinations, sustainable tourism destination management, S-LCA framework

Procedia PDF Downloads 40
4098 Anaerobic Digestion of Organic Wastes for Biogas Production

Authors: Ayhan Varol, Aysenur Ugurlu

Abstract:

Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%.

Keywords: biogas production, organic wastes, biomethane, anaerobic digestion

Procedia PDF Downloads 246
4097 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 123
4096 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.

Keywords: aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame

Procedia PDF Downloads 418
4095 Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 257
4094 Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents

Authors: Mohd. Akram, A. A. M. Saeed

Abstract:

Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated.

Keywords: glycyl-DL-aspartic acid, ninhydrin, organic solvents, TTAB

Procedia PDF Downloads 358
4093 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 303
4092 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 100
4091 Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint

Authors: Leveque Benjamin, Rabaud Suzanne, Anest Hugo, Catalan Caroline, Neveux Guillaume

Abstract:

Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements.

Keywords: biodiversity, companies, footprint, life cycle assessment, products

Procedia PDF Downloads 295
4090 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface

Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya

Abstract:

Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.

Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy

Procedia PDF Downloads 220
4089 Dissolved Organic Nitrogen in Antibiotic Production Wastewater Treatment Plant Effluents

Authors: Ahmed Y. Kutbi, C. Russell. J. Baird, M. McNaughtan, Francis Wayman

Abstract:

Wastewaters from antibiotic production facilities are characterized with high concentrations of dissolved organic substances. Subsequently, it challenges wastewater treatment plant operator to achieve successful biological treatment and to meet regulatory emission levels. Of the dissolved organic substances, this research is investigating the fate of organic nitrogenous compounds (i.e., Chitin) in an antibiotic production wastewater treatment plant located in Irvine, Scotland and its impact on the WWTP removal performance. Dissolved organic nitrogen (DON) in WWTP effluents are of significance because 1) its potential to cause eutrophication in receiving waters, 2) the formation of nitrogenous disinfection by products in drinking waters and 3) limits WWTPs ability to achieve very low total nitrogen (TN) emissions limits (5 – 25 mg/l). The latter point is where the knowledge gap lays between the operator and the regulator in setting viable TN emission levels. The samples collected from Irvine site at the different stages of the treatment were analyzed for TN and DON. Results showed that the average TN in the WWTP influents and effluents are 798 and 261 mg/l respectively, in other words, the plant achieved 67 % removal of TN. DON Represented 51% of the influents TN, while the effluents accounted 26 % of the TN concentrations. Therefore, an ongoing investigation is carried out to identify DON constituents in WWTP effluent and evaluate its impact on the WWTP performance and its potential bioavailability for algae in receiving waters, which is, in this case, Irvine Bay.

Keywords: biological wastewater treatment plant, dissolved organic nitrogen, bio-availability, Irvine Bay

Procedia PDF Downloads 219
4088 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 156
4087 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 109