Search results for: Karthik B. Ariyur
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30

Search results for: Karthik B. Ariyur

30 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 180
29 TiO2/PDMS Coating With Minimum Solar Absorption Loss for Passive Daytime Radiative Cooling

Authors: Bhrigu Rishi Mishra, Sreerag Sundaram, Nithin Jo Varghese, Karthik Sasihithlu

Abstract:

We have designed a TiO2/PDMS coating with 94% solar reflection, 96% IR emission, and 81.8 W/m2 cooling power for passive daytime radiative cooling using Kubelka Munk theory and CST microwave studio. To reduce solar absorption loss in 0.3-0.39 m wavelength region, a TiO2 thin film on top of the coating is used. Simulation using Ansys Lumerical shows that for a 20 m thick TiO2/PDMS coating, a TiO2 thin film of 84 nm increases the coating's reflectivity by 11% in the solar region.

Keywords: passive daytime radiative cooling, disordered metamaterial, Kudelka Munk theory, solar reflectivity

Procedia PDF Downloads 131
28 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue

Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri

Abstract:

In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.

Keywords: mixed-initiative planning and control, operator control interfaces for rescue robotics, situation awareness, urban search, rescue robotics

Procedia PDF Downloads 375
27 Utilization of Fly Ash as Backfilling Material in Indian Coal Mines

Authors: P. Venkata Karthik, B. Kranthi Kumar

Abstract:

Fly ash is a solid waste product of coal based electric power generating plants. Fly ash is the finest of coal ash particles and it is transported from the combustion chamber by exhaust gases. Fly ash is removed by particulate emission control devices such as electrostatic precipitators or filter fabric bag-houses. It is a fine material with spherical particles. Large quantities of fly ash discharged from coal-fired power stations are a major problem not only in terms of scarcity of land available for its disposal, but also in environmental aspects. Fly ash can be one of the alternatives and can be a viable option to use as a filling material. This paper contains the problems associated with fly ash generation, need for its management and the efficacy of fly ash composite as a backfilling material. By conducting suitable geotechnical investigations and numerical modelling techniques, the fly ash composite material was tested. It also contains case studies of typical Indian opencast and underground coal mines.

Keywords: backfilling, fly ash, high concentration slurry disposal, power plant, void infilling

Procedia PDF Downloads 254
26 Synthesis of [1-(Substituted-Sulfonyl)-Piperidin-4-yl]-(2,4-Difluoro-Phenyl)-Methanone Oximes and Their Biological Activity

Authors: L. Mallesha, C. S. Karthik, P. Mallu

Abstract:

A series of new [1-(substituted-benzoyl)-piperidin-4-yl]-(2,4-difluoro-phenyl)-methanone oxime derivatives, 3(a-f) were synthesized and characterized by different spectral studies. All compounds were evaluated for their in vitro antibacterial activity against bacterial strains. These compounds were screened for their antioxidant activity by DPPH• and Fe2+ chelating assay. Antiproliferative effects were evaluated using the MTT assay method against two human cancer cell lines and one astrocytoma brain tumor cell line. Compound 3b exhibited moderate antibacterial activity when compared with other compounds. All the compounds showed antioxidant activity, where compound 3f was the best radical scavenger and Fe2+ ion scavenger. Compounds, 3b, and 3d showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Piperidine, antibacterial, antioxidant, antiproliferative

Procedia PDF Downloads 414
25 Influence of Major Axis on the Aerodynamic Characteristics of Elliptical Section

Authors: K. B. Rajasekarababu, J. Karthik, G. Vinayagamurthy

Abstract:

This paper is intended to explain the influence of major axis on aerodynamic characteristics of elliptical section. Many engineering applications such as off shore structures, bridge piers, civil structures and pipelines can be modelled as a circular cylinder but flow over complex bodies like, submarines, Elliptical wing, fuselage, missiles, and rotor blades, in which the parameters such as axis ratio can influence the flow characteristics of the wake and nature of separation. Influence of Major axis in Flow characteristics of elliptical sections are examined both experimentally and computationally in this study. For this research, four elliptical models with varying major axis [*AR=1, 4, 6, 10] are analysed. Experimental works have been conducted in a subsonic wind tunnel. Furthermore, flow characteristics on elliptical model are predicted from k-ε turbulence model using the commercial CFD packages by pressure based transient solver with Standard wall conditions.The analysis can be extended to estimation and comparison of Drag coefficient and Fatigue analysis of elliptical sections.

Keywords: elliptical section, major axis, aerodynamic characteristics, k-ε turbulence model

Procedia PDF Downloads 437
24 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 582
23 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: base drag, bluff body, splitter plate, vortex flow, ANSYS, fluent

Procedia PDF Downloads 180
22 Swarm Optimization of Unmanned Vehicles and Object Localization

Authors: Venkataramana Sovenahalli Badigar, B. M. Suryakanth, Akshar Prasanna, Karthik Veeramalai, Vishwak Ram Vishwak Ram

Abstract:

Technological advances have led to widespread autonomy in vehicles. Empowering these autonomous with the intelligence to cooperate amongst themselves leads to a more efficient use of the resources available to them. This paper proposes a demonstration of a swarm algorithm implemented on a group of autonomous vehicles. The demonstration involves two ground bots and an aerial drone which cooperate amongst them to locate an object of interest. The object of interest is modelled using a high-intensity light source which acts as a beacon. The ground bots are light sensitive and move towards the beacon. The ground bots and the drone traverse in random paths and jointly locate the beacon. This finds application in various scenarios in where human interference is difficult such as search and rescue during natural disasters, delivering crucial packages in perilous situations, etc. Experimental results show that the modified swarm algorithm implemented in this system has better performance compared to fully random based moving algorithm for object localization and tracking.

Keywords: swarm algorithm, object localization, ground bots, drone, beacon

Procedia PDF Downloads 257
21 Flow Control Optimisation Using Vortex Generators in Turbine Blade

Authors: J. Karthik, G. Vinayagamurthy

Abstract:

Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.

Keywords: flow control, vortex generators, design optimisation, CFD

Procedia PDF Downloads 408
20 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 19
19 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
18 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
17 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 297
16 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology

Authors: Joseph C. Chen, Venkata Karthik Jakka

Abstract:

The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.

Keywords: injection molding processes, taguchi parameter design, tensile strength, high-density polyethylene(HDPE)

Procedia PDF Downloads 196
15 Value-Added Products from Recycling of Solid Waste in Steel Plants

Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu

Abstract:

Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.

Keywords: calcium ferrite, flux, slag formation, solid waste

Procedia PDF Downloads 215
14 A Surgical Correction and Innovative Splint for Swan Neck Deformity in Hypermobility Syndrome

Authors: Deepak Ganjiwale, Karthik Vishwanathan

Abstract:

Objective: Splinting is a great domain of occupational therapy profession.Making a splint for the patient would depend upon the need or requirement of the problems and deformities. Swan neck deformity is not very common in finger it may occur after any disease. Conservative treatment of the swan neck deformity is available by using different static splints only. There are very few reports of surgical correction of swan-neck deformity in benign hypermobility syndrome. Method: This case report describes the result of surgical intervention and hand splint in a twenty year old lady with past history of cardiovascular stroke with no residual neurological deficit. She presented with correctable swan neck deformity and failed to improve with static ring splints to correct the deformity. She was noted to have hyperlaxity (EhlerDanlos type) as per modified Beighton’s score of 5/9. She underwent volar plate plication of the proximal interphalangeal joint of the left ring finger along with hemitenodesis of ulnar slip of flexor digitorum superficialis (FDS) tendon whereby, the ulnar slip of FDS was passed through a small surgically created rent in A2 pulley and sutured back to itself. Result: Postoperatively, the patient was referred to occupational therapy for splinting with the instruction that the splint would work some time for as static and some time as dynamic for positional and correction of the finger. Conclusion: After occupational therapy intervention and splinting, the patient had a full correction of the swan-neck deformity with near full flexion of the operated finger and is able to work independently.

Keywords: swan neck, finger, deformity, splint, hypermobility

Procedia PDF Downloads 254
13 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 261
12 Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated M-42 High Speed Steel

Authors: R. N. Karthik Babu, R. Sarvesh, A. Rajendra Prasad, G. Swaminathan

Abstract:

M42 is a molybdenum-series high-speed alloy steel widely used because of its better hot-hardness and wear resistance. These steels are conventionally heat treated in a salt bath furnace with up to three stages of preheating with predetermined soaking and holding periods. Such methods often involve long periods of processing with a large amount of energy consumed. In this study, the M42 steel samples were heat-treated by rapidly heating the specimens to the austenising temperature of 1260 °C and cooled conventionally by quenching in a neutral salt bath at a temperature of 550 °C with the aid of a hybrid microwave furnace. As metals reflect microwaves, they cannot directly be heated up when placed in a microwave furnace. The technology used herein requires the specimens to be placed in a crucible lined with SiC which is a good absorber of microwaves and the SiC lining heats the metal through radiation which facilitates the volumetric heating of the metal. A sample of similar dimensions was heat treated conventionally and cooled in the same manner. Conventional tempering process was then carried out on both these samples and analysed for various parameters such as micro-hardness, processing time, etc. Microstructure analysis and scanning electron microscopy was also carried out. The objective of the study being that similar or better properties, with substantial time and energy saving and cost cutting are achievable by rapid heat treatment through hybrid microwave furnaces. It is observed that the heat treatment is done with substantial time and energy savings, and also with minute improvement in mechanical properties of the tool steel heat treated.

Keywords: rapid heating, heat treatment, metal processing, microwave heating

Procedia PDF Downloads 286
11 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 44
10 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel

Authors: Karthik K. R, Viswanath V, Asraff A. K

Abstract:

The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.

Keywords: FAD, j-integral, fracture, surface crack

Procedia PDF Downloads 187
9 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 264
8 Effectiveness of Project Grit in Building Resilience among At-Risk Adolescents: A Case Study

Authors: Narash Narasimman, Calvin Leong Jia Jun, Raksha Karthik, Paul Englert

Abstract:

Background: Project Grit, a 12-week youth resilience program implemented by Impart and Spartans Boxing Club, aimed to help at-risk adolescents develop resilience through psychoeducation and mental health techniques for dealing with everyday stressors and adversity. The programme consists of two parts-1.5 hours of group therapy followed by 1 hour of boxing. Due to the novelty of the study, 6 male participants, aged 13 to 18, were recruited to participate in the study. Aim: This case study aims to examine the effectiveness of Project Grit in building resilience among at-risk adolescents. Methods: A case study design was employed to capture the complexity and uniqueness of the intervention, without oversimplifying or generalizing it. A 15-year-old male participant with a history of behavioural challenges, delinquency and gang involvement was selected for the study. Teacher, parent and child versions of the Strengths and Difficulties Questionnaire (SDQ) were administered to the facilitators, parents and participants respectively before and after the programme. Relevant themes from the qualitative interviews will be discussed. Results: Scores from all raters revealed improvements in most domains of the SDQ. Total difficulties scores across all raters improved from “very high” to “close to average”. High interrater reliability was observed (κ= .81). The participant reported learning methods to effectively deal with his everyday concerns using healthy coping strategies, developing a supportive social network, and building on his self efficacy. Themes from the subject’s report concurred with the improvement in SDQ scores. Conclusions: The findings suggest that Project Grit is a promising intervention for promoting resilience among at-risk adolescents. The teleological behaviourism framework and the combination of sports engagement and future orientation may be particularly effective in fostering resilience among this population. Further studies need to be conducted with a larger sample size to further validate the effectiveness of Project Grit.

Keywords: resilience, project grit, adolescents, at-risk, boxing, future orientation

Procedia PDF Downloads 63
7 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
6 Effect of Motor Imagery of Truncal Exercises on Trunk Function and Balance in Early Stroke: A Randomized Controlled Trial

Authors: Elsa Reethu, S. Karthik Babu, N. Syed

Abstract:

Background: Studies in the past focused on the additional benefits of action observation in improving upper and lower limb functions and improving activities of daily living when administered along with conventional therapy. Nevertheless, there is a paucity of literature proving the effects of motor imagery of truncal exercise in improving trunk control in patients with stroke. Aims/purpose: To study the effect of motor imagery of truncal exercises on trunk function and balance in early stroke. Methods: A total of 24 patients were included in the study. 12 were included in the experimental group and 12 were included in control group Trunk function was measured using Trunk Control Test (TCT), Trunk Impairment Scale Verheyden (TIS Verheyden) and Trunk Impairment Scale Fujiwara (TIS Fujiwara). The balance was assessed using Brunel Balance Assessment (BBA) and Tinetti POMA. For the experimental group, each session was for 30 minutes of physical exercises and 15 minutes of motor imagery, once a day, six times a week for 3 weeks and prior to the exercise session, patients viewed a video tape of all the trunk exercises to be performed for 15minutes. The control group practiced the trunk exercises alone for the same duration. Measurements were taken before, after and 4 weeks after intervention. Results: The effect of treatment in motor imagery group showed better improvement when compared with control group when measured after 3 weeks on values of static sitting balance, dynamic balance, total TIS (Verheyden) score, BBA, Tinetti balance and gait with a large effect size of 0.86, 1.99, 1.69, 1.06, 1.63 and 0.97 respectively. The moderate effect size was seen in values of TIS Fujiwara (0.58) and small effect size was seen on TCT (0.12) and TIS coordination component (0.13).at the end of 4 weeks after intervention, the large effect size was identified on values of dynamic balance (2.06), total TIS score (1.59) and Tinetti balance (1.24). The moderate effect size was observed on BBA (0.62) and Tinetti gait (0.72). Conclusion: Trunk motor imagery is effective in improving trunk function and balance in patients with stroke and has a carryover effect in the aspects of mobility. The therapy gain that was observed during the time of discharge was seen to be maintained at the follow-up levels.

Keywords: stroke, trunk rehabilitation, trunk function, balance, motor imagery

Procedia PDF Downloads 300
5 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
4 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study

Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari

Abstract:

Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.

Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers

Procedia PDF Downloads 185
3 Role of Grey Scale Ultrasound Including Elastography in Grading the Severity of Carpal Tunnel Syndrome - A Comparative Cross-sectional Study

Authors: Arjun Prakash, Vinutha H., Karthik N.

Abstract:

BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy with an estimated prevalence of 0.6 - 5.8% in the general adult population. It is caused by compression of the Median Nerve (MN) at the wrist as it passes through a narrow osteofibrous canal. Presently, the diagnosis is established by the clinical symptoms and physical examination and Nerve conduction study (NCS) is used to assess its severity. However, it is considered to be painful, time consuming and expensive, with a false-negative rate between 16 - 34%. Ultrasonography (USG) is now increasingly used as a diagnostic tool in CTS due to its non-invasive nature, increased accessibility and relatively low cost. Elastography is a newer modality in USG which helps to assess stiffness of tissues. However, there is limited available literature about its applications in peripheral nerves. OBJECTIVES: Our objectives were to measure the Cross-Sectional Area (CSA) and elasticity of MN at the carpal tunnel using Grey scale Ultrasonography (USG), Strain Elastography (SE) and Shear Wave Elastography (SWE). We also made an attempt to independently evaluate the role of Gray scale USG, SE and SWE in grading the severity of CTS, keeping NCS as the gold standard. MATERIALS AND METHODS: After approval from the Institutional Ethics Review Board, we conducted a comparative cross sectional study for a period of 18 months. The participants were divided into two groups. Group A consisted of 54 patients with clinically diagnosed CTS who underwent NCS, and Group B consisted of 50 controls without any clinical symptoms of CTS. All Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound machine with 2 - 9 Mega Hertz linear probe. In both groups, CSA of the MN was measured on Grey scale USG, and its elasticity was measured at the carpal tunnel (in terms of Strain ratio and Shear Modulus). The variables were compared between both groups by using ‘Independent t test’, and subgroup analyses were performed using one-way analysis of variance. Receiver operating characteristic curves were used to evaluate the diagnostic performance of each variable. RESULTS: The mean CSA of the MN was 13.60 + 3.201 mm2 and 9.17 + 1.665 mm2 in Group A and Group B, respectively (p < 0.001). The mean SWE was 30.65 + 12.996 kPa and 17.33 + 2.919 kPa in Group A and Group B, respectively (p < 0.001), and the mean Strain ratio was 7.545 + 2.017 and 5.802 + 1.153 in Group A and Group B respectively (p < 0.001). CONCLUSION: The combined use of Gray scale USG, SE and SWE is extremely useful in grading the severity of CTS and can be used as a painless and cost-effective alternative to NCS. Early diagnosis and grading of CTS and effective treatment is essential to avoid permanent nerve damage and functional disability.

Keywords: carpal tunnel, ultrasound, elastography, nerve conduction study

Procedia PDF Downloads 101
2 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 358
1 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 342