Search results for: Image Quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11607

Search results for: Image Quality

11577 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 104
11576 The Mediating Effect of Destination Image on Intention to Use a Tourism App

Authors: Arej Alhemimah

Abstract:

This study investigates the influence of tourists’ perceptions of destination image on their intention to use a tourism app. It examines the roles played by tourists’ perceptions of app/website usability, information quality, and risk in shaping tourism destination image and, subsequently, their app use intention. Using an online questionnaire, the study surveyed 194 international tourists in Saudi Arabia. Results were analysed using PLS-SEM. All the proposed hypotheses were supported and significant. Perceived risk had the strongest influence, followed by the influence of tourists’ perceptions of information quality, then app usability. Additionally, perceived risk was found to have a strong effect on the application use intention. The study makes a significant contribution to the tourism website/application literature; its implications provide practical insights and recommendations for destination marketers and managers to improve their online and social media presence in terms of enhancing e-platform usability, quality of provided information, and most importantly, to create a destination strategy to manage tourists’ risk perceptions.

Keywords: destination image, perceived risk, use intention, tourism app, information quality

Procedia PDF Downloads 40
11575 Noise Detection Algorithm for Skin Disease Image Identification

Authors: Minakshi Mainaji Sonawane, Bharti W. Gawali, Sudhir Mendhekar, Ramesh R. Manza

Abstract:

People's lives and health are severely impacted by skin diseases. A new study proposes an effective method for identifying the different forms of skin diseases. Image denoising is a technique for improving image quality after it has been harmed by noise. The proposed technique is based on the usage of the wavelet transform. Wavelet transform is the best method for analyzing the image due to the ability to split the image into the sub-band, which has been used to estimate the noise ratio at the noisy image. According to experimental results, the proposed method presents the best values for MSE, PSNR, and Entropy for denoised images. we can found in Also, by using different types of wavelet transform filters is make the proposed approach can obtain the best results 23.13, 20.08, 50.7 for the image denoising process

Keywords: MSE, PSNR, entropy, Gaussian filter, DWT

Procedia PDF Downloads 187
11574 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 182
11573 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 396
11572 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping

Authors: Adnan A. Y. Mustafa

Abstract:

In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.

Keywords: big images, binary images, image matching, image similarity

Procedia PDF Downloads 158
11571 Corporate Social Responsibility Initiatives in COVID-19: The Effect of CSR Motives Attributions on Advocacy

Authors: Tengku Ezni Balqiah, Fanny Martdianty, Rifelly Dewi Astuti, Mutia Nurazizah Rachmawati

Abstract:

The Corona Disease 2019 (COVID-19) pandemic has changed the world considerably and has disrupted businesses and people’s lives globally. In response to the pandemic, businesses have seen increased demand for corporate social responsibility (CSR). Businesses can increase their investments in CSR initiatives during the pandemic through various actions. This study examines how the various motives of philanthropy CSR influence perceived quality of life, company image, and advocacy. This study employed surveys of 719 respondents from seven provinces in Indonesia that had the highest number of COVID-19 cases in the country. A structural equation model was used to test the hypothesis. The results showed that value and strategic motives positively influenced the perceived quality of life and corporate image, while the egoistic motive was negatively associated with both the perceived quality of life and the image of the company. The study also suggested that advocacy was strongly related to the perceived quality of life instead of a corporate image. The results indicate that, during a pandemic, both public- (i.e. value) and firm-serving (i.e. strategic) motives can have the same impact as long as people perceive that the businesses are sincere.

Keywords: advocacy, COVID 19, CSR motive, Indonesia, quality of life

Procedia PDF Downloads 101
11570 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 43
11569 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 39
11568 Objective Evaluation on Medical Image Compression Using Wavelet Transformation

Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah

Abstract:

The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.

Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation

Procedia PDF Downloads 264
11567 Quality Assurances for an On-Board Imaging System of a Linear Accelerator: Five Months Data Analysis

Authors: Liyun Chang, Cheng-Hsiang Tsai

Abstract:

To ensure the radiation precisely delivering to the target of cancer patients, the linear accelerator equipped with the pretreatment on-board imaging system is introduced and through it the patient setup is verified before the daily treatment. New generation radiotherapy using beam-intensity modulation, usually associated the treatment with steep dose gradients, claimed to have achieved both a higher degree of dose conformation in the targets and a further reduction of toxicity in normal tissues. However, this benefit is counterproductive if the beam is delivered imprecisely. To avoid shooting critical organs or normal tissues rather than the target, it is very important to carry out the quality assurance (QA) of this on-board imaging system. The QA of the On-Board Imager® (OBI) system of one Varian Clinac-iX linear accelerator was performed through our procedures modified from a relevant report and AAPM TG142. Two image modalities, 2D radiography and 3D cone-beam computed tomography (CBCT), of the OBI system were examined. The daily and monthly QA was executed for five months in the categories of safety, geometrical accuracy and image quality. A marker phantom and a blade calibration plate were used for the QA of geometrical accuracy, while the Leeds phantom and Catphan 504 phantom were used in the QA of radiographic and CBCT image quality, respectively. The reference images were generated through a GE LightSpeed CT simulator with an ADAC Pinnacle treatment planning system. Finally, the image quality was analyzed via an OsiriX medical imaging system. For the geometrical accuracy test, the average deviations of the OBI isocenter in each direction are less than 0.6 mm with uncertainties less than 0.2 mm, while all the other items have the displacements less than 1 mm. For radiographic image quality, the spatial resolution is 1.6 lp/cm with contrasts less than 2.2%. The spatial resolution, low contrast, and HU homogenous of CBCT are larger than 6 lp/cm, less than 1% and within 20 HU, respectively. All tests are within the criteria, except the HU value of Teflon measured with the full fan mode exceeding the suggested value that could be due to itself high HU value and needed to be rechecked. The OBI system in our facility was then demonstrated to be reliable with stable image quality. The QA of OBI system is really necessary to achieve the best treatment for a patient.

Keywords: CBCT, image quality, quality assurance, OBI

Procedia PDF Downloads 265
11566 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 65
11565 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 183
11564 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis

Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin

Abstract:

Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.

Keywords: chest radiography, digital tomosynthesis, image quality, scan speed

Procedia PDF Downloads 302
11563 Comparison of Radiation Dosage and Image Quality: Digital Breast Tomosynthesis vs. Full-Field Digital Mammography

Authors: Okhee Woo

Abstract:

Purpose: With increasing concern of individual radiation exposure doses, studies analyzing radiation dosage in breast imaging modalities are required. Aim of this study is to compare radiation dosage and image quality between digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM). Methods and Materials: 303 patients (mean age 52.1 years) who studied DBT and FFDM were retrospectively reviewed. Radiation dosage data were obtained by radiation dosage scoring and monitoring program: Radimetrics (Bayer HealthCare, Whippany, NJ). Entrance dose and mean glandular doses in each breast were obtained in both imaging modalities. To compare the image quality of DBT with two-dimensional synthesized mammogram (2DSM) and FFDM, 5-point scoring of lesion clarity was assessed and the better modality between the two was selected. Interobserver performance was compared with kappa values and diagnostic accuracy was compared using McNemar test. The parameters of radiation dosages (entrance dose, mean glandular dose) and image quality were compared between two modalities by using paired t-test and Wilcoxon rank sum test. Results: For entrance dose and mean glandular doses for each breasts, DBT had lower values compared with FFDM (p-value < 0.0001). Diagnostic accuracy did not have statistical difference, but lesion clarity score was higher in DBT with 2DSM and DBT was chosen as a better modality compared with FFDM. Conclusion: DBT showed lower radiation entrance dose and also lower mean glandular doses to both breasts compared with FFDM. Also, DBT with 2DSM had better image quality than FFDM with similar diagnostic accuracy, suggesting that DBT may have a potential to be performed as an alternative to FFDM.

Keywords: radiation dose, DBT, digital mammography, image quality

Procedia PDF Downloads 321
11562 A Method of the Semantic on Image Auto-Annotation

Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou

Abstract:

Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.

Keywords: image auto-annotation, color correlograms, Hash code, image retrieval

Procedia PDF Downloads 456
11561 Assessment of Sleep Disorders in Moroccan Women with Gynecological Cancer: Cross-Sectional Study

Authors: Amina Aquil, Abdeljalil El Got

Abstract:

Background: Sleep quality is one of the most important indicators related to the quality of life of patients suffering from cancer. Many factors could affect this quality of sleep and then be considered as associated predictors. Methods: The aim of this study was to assess the prevalence of sleep disorders and the associated factors with impaired sleep quality in Moroccan women with gynecological cancer. A cross-sectional study was carried out within the oncology department of the Ibn Rochd University Hospital, Casablanca, on Moroccan women who had undergone radical surgery for gynecological cancer (n=100). Translated and validated Arabic versions of the following international scales were used: Pittsburgh sleep quality index (PSQI), Hospital Anxiety and Depression Scale (HADS), Rosenberg's self-esteem scale (RSES), and Body image scale (BIS). Results: 78% of participants were considered poor sleepers. Most of the patients exhibited very poor subjective quality, low sleep latency, a short period of sleep, and a low rate of usual sleep efficiency. The vast majority of these patients were in poor shape during the day and did not use sleep medication. Waking up in the middle of the night or early in the morning and getting up to use the bathroom were the main reasons for poor sleep quality. PSQI scores were positively correlated with anxiety, depression, body image dissatisfaction, and lower self-esteem (p < 0.001). Conclusion: Sleep quality and its predictors require a systematic evaluation and adequate management to prevent sleep disturbances and mental distress as well as to improve the quality of life of these patients.

Keywords: body image, gynecological cancer, self esteem, sleep quality

Procedia PDF Downloads 90
11560 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: computed tomography, enhancement techniques, increasing contrast, PSNR and MSE

Procedia PDF Downloads 282
11559 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 328
11558 Deployment of Matrix Transpose in Digital Image Encryption

Authors: Okike Benjamin, Garba E J. D.

Abstract:

Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.

Keywords: image encryption, matrices, pixel, matrix transpose

Procedia PDF Downloads 383
11557 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions

Authors: Toshanlal Meenpal, Ankita Meenpal

Abstract:

A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.

Keywords: information hiding, wedge direction, difference expansion, integer transform

Procedia PDF Downloads 450
11556 Reduction of Speckle Noise in Echocardiographic Images: A Survey

Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida

Abstract:

Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.

Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes

Procedia PDF Downloads 497
11555 Graduates Perceptions Towards the Image of Suan Sunandha Rajabhat University on the Graduation Rehearsal Day

Authors: Suangsuda Subjaroen, Chutikarn Sriviboon, Rosjana Chandhasa

Abstract:

This research aims to examine the graduates' overall satisfaction and influential factors that affect the image of Suan Sunandha Rajabhat University, according to the graduates' viewpoints on the graduation rehearsal day. In accordance with the graduates' perceptions, the study is related to the levels of graduates' satisfaction, their perceived quality, perceived value, and the image of Suan Sunandha Rajabhat University. The sample group in this study involved 1,129 graduates of Suan Sunandha Rajabhat University who attended on 2019 graduation rehearsal day. A questionnaire was used as an instrument in order to collect data. By the use of computing software, the statistics used for data analysis were various, ranging from frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and Multiple Regression Analysis. The majority of participants were graduates with a bachelor's degree, followed by masters graduates and PhD graduates, respectively. Among the participants, most of them graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. Overall, the graduates were satisfied with the graduation rehearsal day, and each aspect was rated at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation rehearsal personnel and staff, venue, and facilities. Referring to graduates' perceptions, the perceived quality was rated at a very good level, the perceived value was at a good level, whereas the image of Suan Sunandha Rajabhat University was perceived at a good level, respectively. There were differences in satisfaction levels among graduates with a bachelor's degree, graduates with a master's degree and a doctoral degree with statistical significance at the level of 0.05. There was a statistical significance at the level of 0.05 in perceived quality and perceived value affecting the image of Suan Sunandha Rajabhat University. The image of Suan Sunandha Rajabhat University influenced graduates' satisfaction level with statistical significance at the level of 0.01.

Keywords: university image, perceived quality, perceived value, intention to study higher education, intention to recommend the university to others

Procedia PDF Downloads 84
11554 Error Analysis of Wavelet-Based Image Steganograhy Scheme

Authors: Geeta Kasana, Kulbir Singh, Satvinder Singh

Abstract:

In this paper, a steganographic scheme for digital images using Integer Wavelet Transform (IWT) is proposed. The cover image is decomposed into wavelet sub bands using IWT. Each of the subband is divided into blocks of equal size and secret data is embedded into the largest and smallest pixel values of each block of the subband. Visual quality of stego images is acceptable as PSNR between cover image and stego is above 40 dB, imperceptibility is maintained. Experimental results show better tradeoff between capacity and visual perceptivity compared to the existing algorithms. Maximum possible error analysis is evaluated for each of the wavelet subbands of an image.

Keywords: DWT, IWT, MSE, PSNR

Procedia PDF Downloads 469
11553 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images

Authors: R. Sumalatha, M. V. Subramanyam

Abstract:

In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.

Keywords: salt and pepper noise, ASMF, PSNR, MSE

Procedia PDF Downloads 410
11552 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform

Procedia PDF Downloads 188
11551 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 320
11550 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 410
11549 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 349
11548 Characterization of Optical Systems for Intraocular Projection

Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera

Abstract:

Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.

Keywords: focusing, projection, blindness, cornea , achromatic, pinhole

Procedia PDF Downloads 98