Search results for: Bi-conjugate gradient stabilized (Bi-CGSTAB)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1033

Search results for: Bi-conjugate gradient stabilized (Bi-CGSTAB)

253 Effect of Depth on Texture Features of Ultrasound Images

Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes

Abstract:

In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.

Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering

Procedia PDF Downloads 266
252 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA

Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko

Abstract:

The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.

Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA

Procedia PDF Downloads 482
251 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 134
250 Curcumin-Loaded Pickering Emulsion Stabilized by pH-Induced Self-Aggregated Chitosan Particles for Encapsulating Bioactive Compounds for Food, Flavor/Fragrance, Cosmetics, and Medicine

Authors: Rizwan Ahmed Bhutto, Noor ul ain Hira Bhutto, Mingwei Wang, Shahid Iqbal, Jiang Yi

Abstract:

Curcumin, a natural polyphenolic compound, boasts numerous health benefits; however, its industrial applications are hindered by instabilities and poor solubility. Encapsulating curcumin in Pickering emulsion presents a promising strategy to enhance its bioavailability. Yet, the development of an efficient and straightforward method to fabricate a natural emulsifier for Pickering emulsion poses a significant challenge. Chitosan has garnered attention due to its non-toxicity and excellent emulsifying properties. This study aimed to prepare four distinct types of self-aggregated chitosan particles using a pH-responsive self-assembling approach. The properties of the aggregated particles were adjusted by pH, degree of deacetylation (DDA), and molecular weight (MW), thereby controlling surface charge, size (ranging from nano to micro and floc), and contact angle. Pickering emulsions were then formulated using these various aggregated particles. As MW and pH increased and DDA decreased, the networked structures of the aggregated particles formed, resulting in highly elastic gels that were more resistant to the breakdown of Pickering emulsion at ambient temperature. With elevated temperatures, the kinetic energy of the aggregated particles increased, disrupting hydrogen bonds and potentially transforming the systems from fluids to gels. The Pickering emulsion based on aggregated particles served as a carrier for curcumin encapsulation. It was observed that DDA and MW played crucial roles in regulating drug loading, encapsulation efficiency, and release profile. This research sheds light on selecting suitable chitosan for controlling the release of bioactive compounds in Pickering emulsions, considering factors such as adjustable rheological properties, microstructure, and macrostructure. Furthermore, this study introduces an environmentally friendly and cost-effective synthesis of pH-responsive aggregate particles without the need for high-pressure homogenizers. It underscores the potential of aggregate particles with various MWs and DDAs for encapsulating other bioactive compounds, offering valuable applications in industries including food, flavor/fragrance, cosmetics, and medicine.

Keywords: chitosan, molecular weight, rheological properties, curcumin encapsulation

Procedia PDF Downloads 31
249 Development and Validation of Selective Methods for Estimation of Valaciclovir in Pharmaceutical Dosage Form

Authors: Eman M. Morgan, Hayam M. Lotfy, Yasmin M. Fayez, Mohamed Abdelkawy, Engy Shokry

Abstract:

Two simple, selective, economic, safe, accurate, precise and environmentally friendly methods were developed and validated for the quantitative determination of valaciclovir (VAL) in the presence of its related substances R1 (acyclovir), R2 (guanine) in bulk powder and in the commercial pharmaceutical product containing the drug. Method A is a colorimetric method where VAL selectively reacts with ferric hydroxamate and the developed color was measured at 490 nm over a concentration range of 0.4-2 mg/mL with percentage recovery 100.05 ± 0.58 and correlation coefficient 0.9999. Method B is a reversed phase ultra performance liquid chromatographic technique (UPLC) which is considered superior in technology to the high-performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Efficient separation was achieved on Agilent Zorbax CN column using ammonium acetate (0.1%) and acetonitrile as a mobile phase in a linear gradient program. Elution time for the separation was less than 5 min and ultraviolet detection was carried out at 256 nm over a concentration range of 2-50 μg/mL with mean percentage recovery 100.11±0.55 and correlation coefficient 0.9999. The proposed methods were fully validated as per International Conference on Harmonization specifications and effectively applied for the analysis of valaciclovir in pure form and tablets dosage form. Statistical comparison of the results obtained by the proposed and official or reported methods revealed no significant difference in the performance of these methods regarding the accuracy and precision respectively.

Keywords: hydroxamic acid, related substances, UPLC, valaciclovir

Procedia PDF Downloads 223
248 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 63
247 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 248
246 Optimum Design of Dual-Purpose Outriggers in Tall Buildings

Authors: Jiwon Park, Jihae Hur, Kukjae Kim, Hansoo Kim

Abstract:

In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: concrete structure, optimization, outrigger, tall building

Procedia PDF Downloads 152
245 Transdermal Delivery of Sodium Diclofenac from Palm Kernel Oil Esteres Nanoemulsions

Authors: Malahat Rezaee, Mahiran Basri, Abu Bakar Salleh, Raja Noor Zaliha Raja Abdul Rahman

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that has been progressively considered in pharmaceutical science for transdermal delivery of the drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using the surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils, contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research aimed to study the effect of terpene type and concentration on sodium diclofenac permeation from palm kernel oil esters nanoemulsions and physicochemical properties of the nanoemulsions systems. The effect of various terpenes of geraniol, menthone, menthol, cineol and nerolidol at different concentrations of 0.5, 1.0, 2.0, and 4.0% on permeation of sodium diclofenac were evaluated using Franz diffusion cells and rat skin as permeation membrane. The results of this part demonstrated that all terpenes showed promoting effect on sodium diclofenac penetration. However, menthol and menthone at all concentrations showed significant effects (<0.05) on drug permeation. The most outstanding terpene was menthol with the most significant effect for skin permeability of sodium diclofenac. The effect of terpenes on physicochemical properties of nanoemulsion systems was investigated on the parameters of particle size, zeta potential, pH, viscosity and electrical conductivity. The result showed that all terpenes had the significant effect on particle size and non-significant effects on the zeta potential of the nanoemulsion systems. The effect of terpenes was significant on pH, excluding the menthone at concentrations of 0.5 and 1.0%, and cineol and nerolidol at the concentration of 2.0%. Terpenes also had significant effect on viscosity of nanoemulsions exception of menthone and cineol at the concentration of 0.5%. The result of conductivity measurements showed that all terpenes at all concentration except cineol at the concentration of 0.5% represented significant effect on electrical conductivity.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, terpenes, skin permeation

Procedia PDF Downloads 389
244 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.

Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress

Procedia PDF Downloads 353
243 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling

Authors: Ali Ashtiani, Cesar Carrasco

Abstract:

Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.

Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement

Procedia PDF Downloads 128
242 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 234
241 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan

Authors: Noori Shafiqullah

Abstract:

Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."

Keywords: improved MODIS, experiment, snow water equivalent, snowmelt

Procedia PDF Downloads 43
240 Refractory T-Cell Prolymphocytic Leukemia with JAK3 Mutation: In Vitro and Clinical Synergy of Tofacitinib and Ruxolitinib

Authors: Mike Wei, Nebu Koshy, Koen van Besien, Giorgio Inghirami, Steven M. Horwitz

Abstract:

T-cell prolymphocytic leukemia (T-PLL) is a rare hematologic disease characterized by a T-cell phenotype, rapid progression, and poor prognosis with median survival of less than a year. Alemtuzumab-based chemotherapy has increased the rate of complete remissions but these are often short-lived, and allogeneic transplant is considered the only curative therapy. In recent studies, JAK3 activating mutations have been identified in T-cell cancers, with T-PLL having the highest rate of JAK3 mutations (30 – 42%). As such, T-PLL is a model disease for evaluating the utility of JAK3 inhibitors. We present a case of a 64-year-old man with relapsed-refractory T-PLL. He was initially treated with alemtuzumab and obtained complete response and was consolidated with matched unrelated donor stem cell transplant. His disease stayed in remission for approximately 1.5 years before relapse, which was then treated with a clinical trial of romidepsin-lenalidomide (partial responses then progression at 6 months) and later alemtuzumab. Due to complications of myelosuppression and CMV reactivation, his treatment was interrupted leading to disease progression. The doubling time of lymphocyte count was approximately 20 days and over a span of 60 days the lymphocyte count rose from 8 x 109/L to 68 x 109/L. Exon sequencing showed a JAK3 mutation. The patient consented to and was treated with FDA-approved tofacitinib (initially 5 mg BID, increased to 10 mg BID after 15 days of treatment). An initial decrease in lymphocyte count was followed by progression. In vitro treatment of the patient’s cells showed modest effects of tofacitinib and ruxolitinib as single agents, in the range of doxorubicin, but synergy between the agents. After 40 days of treatment with tofacitinib and with a lymphocyte count of 150 x 109/L, ruxolitinib (5mg BID) was added. Over the 60 days since dual inhibition was started, the lymphocyte count has stabilized. The patient has remained completely asymptomatic during treatment with tofacitinib and ruxolitinib. Neutrophil count has remained normal. Platelet count and hemoglobin have however declined from ~50 x109/L to ~30 x109/L and from 11 g/dL to 8.1 g/dL respectively, since the introduction of ruxolitinib. The stabilization in lymphocyte count confirms the clinical activity of JAK inhibitors in T-PLL as suggested by the presence of JAK3 mutations and by in-vitro assays. It also suggests clinical synergy between ruxolitinib and tofacitinib in this setting. Prospective studies of JAK inhibitors in PLL patients with formal dose-finding studies are needed.

Keywords: tofacitinib, ruxolitinib, T-cell prolymphocytic leukemia, JAK3

Procedia PDF Downloads 292
239 Marketing of Non Timber Forest Products and Forest Management in Kaffa Biosphere Reserve, Ethiopia

Authors: Amleset Haile

Abstract:

Non-timber forest products (NTFPs) are harvested for both subsistence and commercial use and play a key role in the livelihoods of millions of rural people. Non-timber forest products (NTFPs) are important in rural southwest Ethiopia, Kaffa as a source of household income. market players at various levels in marketing chains are interviewed to getther information on elements of marketing system–products, product differentiation, value addition, pricing, promotion, distribution, and marketing chains. The study, therefore, was conducted in Kaffa Biosphere reserve of southwest Ethiopia with the main objective of assessing and analyzing the contribution of NTFPs to rural livelihood and to the conservation of the biosphere reserve and to identify factors influencing in the marketing of the NTFP. Five villages were selected based on their proximity gradient from Bonga town and availability of NTFP. Formal survey was carried out on rural households selected using stratified random sampling. The results indicate that Local people practice diverse livelihood activities mainly crops cultivation (cereals and cash crops) and livestock husbandry, gather forest products and off-farm/off-forest activities for surviva. NTFP trade is not a common phenomenon in southwest Ethiopia. The greatest opportunity exists for local level marketing of spices and other non timber forest products. Very little local value addition takes place within the region,and as a result local market players have little control. Policy interventions arc required to enhance the returns to local collectors, which will also contribute to sustainable management of forest resources in Kaffa biosphere reserve.

Keywords: forest management, biosphere reserve, marketing, local people

Procedia PDF Downloads 499
238 The Effect of Kelp Ecklonia maxima Inclusion in Formulated Feed on Growth, Feed Utilization and the Gut Microbiota of South African Abalone Haliotis Midae

Authors: Aldi Nel, Cliff L. W. Jones, Justin O. G. Kemp, Peter J. Britz

Abstract:

Kelp Ecklonia maxima is included in formulated abalone feeds in South Africa, but its effect on abalone growth, feed utilisation efficiency and gut-bacterial communities has not previously been investigated. An eight-month on-farm growth trial with sub-adult Haliotis midae (~43 mm shell length) fed graded levels of kelp in formulated feeds was conducted. Kelp inclusion (0.44–3.54 % of pellet dry mass) promoted faster growth (65.7 – 74.5 % total mass gain), with better feed and protein conversions (FCR: 1.4 – 1.8; PER 2.3 – 2.7), compared to abalone fed the non-supplemented feed (52.3% total mass gain; FCR: 2.1; PER 1.9; p < 0.001). The gut-bacterial communities of abalone fed kelp-supplemented feed (0.88 % of pellet dry mass) were subsequently compared with that of abalone fed a non-supplemented control diet. Abalone gut-bacterial DNA was sequenced using 16S rRNA pyrosequencing and sequences were clustered into operational taxonomic units (OTUs) at a 97 % similarity level. A supplementary 16S rRNA denaturing gradient gel electrophoresis (DGGE) analysis was conducted. The dominant OTUs differed in terms of their relative abundances, with that of an autochthonous Mollicutes strain being significantly higher (p = 0.03) in the guts of abalone fed kelp-supplemented feed. The DGGE band patterns displayed a higher within-group variability of dominant bacterial strains for abalone fed the control diet, suggesting that dietary inclusion of kelp, which is rich in fermentable polysaccharides, promotes a balanced gut-bacterial community. This may contribute to the better feed utilisation and growth in abalone fed kelp-supplemented feeds.

Keywords: abfeed, digestion, macroalgae, mariculture

Procedia PDF Downloads 249
237 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy

Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao

Abstract:

Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.

Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation

Procedia PDF Downloads 134
236 Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture

Authors: Melanie Macgregor-Ramiasa, Isabel Hopp, Patricia Murray, Krasimir Vasilev

Abstract:

Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support.

Keywords: nanotopography, stem cells, differentiation, plasma polymer, oxazoline, gold nanoparticles

Procedia PDF Downloads 250
235 Simulation and Synoptic Investigation of a Severe Dust Storm in Urmia Lake in the Middle East

Authors: Nasim Hossein Hamzeh, Karim Shukurov, Abbas Ranjbar Saadat Abadi, Alaa Mhawish, Christian Opp

Abstract:

Deserts are the main dust sources in the world. Also, recently driedLake beds have caused environmental problems inthe surrounding areas in the world. In this study, the Urmia Lake was the source of dustfromApril 24 to April 25, 2017.The local dust storm was combined with another large-scale dust storm that originated from Saudi Arabia and Iraq 1-2 days earlier. Synoptic investigation revealed that the severe dust storm was made by a strong Black Sea cyclone and a low-pressure system over the Middle East and Central Iraq in conjunction a high-pressure system and associated with a high gradient contour and a quasi-stationary long-wave trough over the east and south of the Mediterranean Sea. Based on HYSPLIT 72 hours backward and forward trajectories, the most probable dust transport routes to and from the Urmia Lake region are estimated. Using the concentration weighted trajectory (CWT) method based on 24 hours backward and 24 hours forward trajectories, the spatial distributions of potential sources of PM10 observed in the Urmia Lake region on April 23-26, 2017. Also, the vertical profile of dust particles using the WRF-Chem model with two dust schemes showed dust ascending up to 5 km from the lake. Also, the dust schemes outputs shows that the PM10 fluctuating changes are 12 hours earlier than the measured surface PM10 at five air pollution monitoring stations around the Urmia Lake in 23-26 April 2017.

Keywords: dust storm, synoptic investigation, WRF-chem model, urmia lake, lagrangian trajectory

Procedia PDF Downloads 189
234 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier

Authors: Pratik Acharya

Abstract:

Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.

Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity

Procedia PDF Downloads 119
233 Comparative Study of Electronic and Optical Properties of Ammonium and Potassium Dinitramide Salts through Ab-Initio Calculations

Authors: J. Prathap Kumar, G. Vaitheeswaran

Abstract:

The present study investigates the role of ammonium and potassium ion in the electronic, bonding and optical properties of dinitramide salts due to their stability and non-toxic nature. A detailed analysis of bonding between NH₄ and K with dinitramide, optical transitions from the valence band to the conduction band, absorption spectra, refractive indices, reflectivity, loss function are reported. These materials are well known as oxidizers in solid rocket propellants. In the present work, we use full potential linear augmented plane wave (FP-LAPW) method which is implemented in the Wien2k package within the framework of density functional theory. The standard DFT functional local density approximation (LDA) and generalized gradient approximation (GGA) always underestimate the band gap by 30-40% due to the lack of derivative discontinuities of the exchange-correlation potential with respect to an occupation number. In order to get reliable results, one must use hybrid functional (HSE-PBE), GW calculations and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. It is very well known that hybrid functionals GW calculations are very expensive, the later methods are computationally cheap. The new developed TB-mBJ functionals use information kinetic energy density along with the charge density employed in DFT. The TB-mBJ functionals cannot be used for total energy calculations but instead yield very much improved band gap. The obtained electronic band gap at gamma point for both the ammonium dinitramide and potassium dinitramide are found to be 2.78 eV and 3.014 eV with GGA functional, respectively. After the inclusion of TB-mBJ, the band gap improved by 4.162 eV for potassium dinitramide and 4.378 eV for ammonium dinitramide. The nature of the band gap is direct in ADN and indirect in KDN. The optical constants such as dielectric constant, absorption, and refractive indices, birefringence values are presented. Overall as there are no experimental studies we present the improved band gap with TB-mBJ functional following with optical properties.

Keywords: ammonium dinitramide, potassium dinitramide, DFT, propellants

Procedia PDF Downloads 132
232 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 342
231 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers

Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe

Abstract:

The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).

Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide

Procedia PDF Downloads 173
230 Performance of an Automotive Engine Running on Gasoline-Condensate Blends

Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis

Abstract:

Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.

Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends

Procedia PDF Downloads 226
229 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 448
228 In vivo Alterations in Ruminal Parameters by Megasphaera Elsdenii Inoculation on Subacute Ruminal Acidosis (SARA)

Authors: M. S. Alatas, H. D. Umucalilar

Abstract:

SARA is a common and serious metabolic disorder in early lactation in dairy cattle and in finishing beef cattle, caused by diets with high inclusion of cereal grain. This experiment was performed to determine the efficacy of Megasphaera elsdenii, a major lactate-utilizing bacterium in prevention/treatment of SARA in vivo. In vivo experimentation, it was used eight ruminally cannulated rams and it was applied the rapid adaptation with the mixture of grain based on wheat (%80 wheat, %20 barley) and barley (%80 barley, %20 wheat). During the systematic adaptation, it was followed the probability of SARA formation by being measured the rumen pH with two hours intervals after and before feeding. After being evaluated the data, it was determined the ruminal pH ranged from 5,2-5,6 on the condition of feeding with 60 percentage of grain mixture based on barley and wheat, that assured the definite form of subacute acidosis. In four days SARA period, M. elsdenii (1010 cfu ml-1) was inoculated during the first two days. During the SARA period, it was observed the decrease of feed intake with M. elsdenii inoculation. Inoculation of M. elsdenii was caused to differentiation of rumen pH (P < 0,0001), while it was found the pH level approximately 5,55 in animals applied the inoculation, it was 5,63 pH in other animals. It was observed that total VFA with the bacterium inoculation tended to change in terms of grain feed (P < 0,07). It increased with the effect of total VFA inoculation in barley based diet, but it was more stabilized in wheat based diet. Bacterium inoculation increased the ratio of propionic acid (18,33%-21,38%) but it caused to decrease the butyric acid, and acetic/propionic acid. During the rapid adaptation, the concentration of lactic acid in the rumen liquid increased depending upon grain level (P<0,0001). On the other hand bacterium inoculation did not have an effect on concentration of lactic acid. M. elsdenii inoculation did not affect ruminal ammonia concentration. In the group that did not apply inoculation, the level of ruminal ammonia concentration was higher than the others applied inoculation. M. elsdenii inoculation did not changed protozoa count in barley-based diet whereas it decreased in wheat-based diet. In the period of SARA, it was observed that the level of blood glucose, lactate and hematocrit increased greatly after inoculation (P < 0,0001). When it is generally evaluated, it is seen that M. elsdenii inoculation has not a positive impact on rumen parameters. Therefore, to reveal the full impact of the inoculation with different strains, feedstuffs and animal groups, further research is required.

Keywords: In vivo, Subactute ruminal acidosis, Megasphaera elsdenii, Rumen fermentation

Procedia PDF Downloads 614
227 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 106
226 Spatial Variability of Heavy Metals in Sediments of Two Streams of the Olifants River System, South Africa

Authors: Abraham Addo-Bediako, Sophy Nukeri, Tebatso Mmako

Abstract:

Many freshwater ecosystems have been subjected to prolonged and cumulative pollution as a result of human activities such as mining, agricultural, industrial and human settlements in their catchments. The objective of this study was to investigate spatial variability of heavy metal pollution of sediments and possible sources of pollutants in two streams of the Olifants River System, South Africa. Stream sediments were collected and analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn) concentrations using inductively coupled plasma-mass mass spectrometry (ICP-MS). In both rivers, As, Cd, Cu, Pb and Zn fell within the concentration ranges recommended by CCME and ANZECC, while the concentrations of Cr and Ni exceeded the standards; the results indicated that Cr and Ni in the sediments originated from human activities and not from natural geological background. The index of geo-accumulation (Igeo) was used to assess the degree of pollution. The results of the geo-accumulation index evaluation showed that Cr and Ni were present in the sediments of the rivers at moderately to extremely polluted levels, while As, Cd, Cu, Pb and Zn existed at unpolluted to moderately polluted levels. Generally, heavy metal concentrations increased along the gradient in the rivers. The high concentrations of Cr and Ni in both rivers are of great concern, as previously these two rivers were classified to be supplying the Olifants River with water of good quality. There is a critical need, therefore to monitor heavy metal concentrations and distributions, as well as a comprehensive plan to prevent health risks, especially those communities still reliant on untreated water from the rivers, as sediment pollution may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.

Keywords: geo-accumulation index, heavy metals, sediment pollution, water quality

Procedia PDF Downloads 132
225 Functional Feeding Groups and Trophic Levels of Benthic Macroinvertebrates Assemblages in Albertine Rift Rivers and Streams in South Western Uganda

Authors: Peace Liz Sasha Musonge

Abstract:

Behavioral aspects of species nutrition such as feeding methods and food type are archetypal biological traits signifying how species have adapted to their environment. This concept of functional feeding groups (FFG) analysis is currently used to ascertain the trophic levels of the aquatic food web in a specific microhabitat. However, in Eastern Africa, information about the FFG classification of benthic macroinvertebrates in highland rivers and streams is almost absent, and existing studies have fragmented datasets. For this reason, we carried out a robust study to determine the feed type, trophic level and FFGs, of 56 macroinvertebrate taxa (identified to family level) from Albertine rift valley streams. Our findings showed that all five major functional feeding groups were represented; Gatherer Collectors (GC); Predators (PR); shredders (SH); Scrapers (SC); and Filterer collectors. The most dominant functional feeding group was the Gatherer Collectors (GC) that accounted for 53.5% of the total population. The most abundant (GC) families were Baetidae (7813 individuals), Chironomidae NTP (5628) and Caenidae (1848). Majority of the macroinvertebrate population feed on Fine particulate organic matter (FPOM) from the stream bottom. In terms of taxa richness the Predators (PR) had the highest value of 24 taxa and the Filterer Collectors group had the least number of taxa (3). The families that had the highest number of predators (PR) were Corixidae (1024 individuals), Coenagrionidae (445) and Libellulidae (283). However, Predators accounted for only 7.4% of the population. The findings highlighted the functional feeding groups and habitat type of macroinvertebrate communities along an altitudinal gradient.

Keywords: trophic levels, functional feeding groups, macroinvertebrates, Albertine rift

Procedia PDF Downloads 216
224 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 46