Search results for: Benchmarks approach
13923 Scientometrics Review of Embodied Carbon Benchmarks for Buildings
Authors: A. Rana, M. Badri, D. Lopez Behar, O. Yee, H. Al Bqaei
Abstract:
The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers.Keywords: buildings embodied carbon benchmark, methods, policy
Procedia PDF Downloads 17213922 Behavior of SPEC CPU2006 Based on Optimization Levels
Authors: Faisel Elramalli, Ibrahim Althomali Amjad Sabbagh, Dhananjay Tambe
Abstract:
SPEC CPU benchmarks are used to evaluate the performance of CPUs on computer systems. In our project we are going to use SPEC CPU suite that contains several benchmarks running on two different compilers gcc and icc in different optimizations levels to evaluate the performance of a CPU. The motivation of this project is to find out which compiler and in which optimization level makes the CPU reaches the best performance. The results of that evaluation will help users of these compilers to choose the best compiler and optimization level that perform efficiently for their work. In other words, it will give users the best performance of the CPU while doing their works. This project is interesting since it will provide the method used to measure the performance of CPU and how different optimization levels of compilers can help achieve a higher performance. Moreover, it will give a good understanding of how benchmarks are used to evaluate a CPU performance. For the reader, in reality SPEC CPU benchmarks are used to measure the performance of new released CPUs to be compared to other CPUs.Keywords: SPEC, CPU, GCC, ICC, copilers
Procedia PDF Downloads 48313921 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 30613920 Comparative Study of Universities’ Web Structure Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
This paper is meant to analyze the ranking of University of Malaysia Terengganu, UMT’s website in the World Wide Web. There are only few researches have been done on comparing the ranking of universities’ websites so this research will be able to determine whether the existing UMT’s website is serving its purpose which is to introduce UMT to the world. The ranking is based on hub and authority values which are accordance to the structure of the website. These values are computed using two web-searching algorithms, HITS and SALSA. Three other universities’ websites are used as the benchmarks which are UM, Harvard and Stanford. The result is clearly showing that more work has to be done on the existing UMT’s website where important pages according to the benchmarks, do not exist in UMT’s pages. The ranking of UMT’s website will act as a guideline for the web-developer to develop a more efficient website.Keywords: algorithm, ranking, website, web structure mining
Procedia PDF Downloads 51613919 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 8013918 Promoting Organizational Learning Facing the Complexity of Public Healthcare: How to Design a Voluntary, Learning-Oriented Benchmarking
Authors: Rachel M. Lørum, Henrik Eriksson, Frida Smith
Abstract:
Purpose: In recent years, the use of benchmarks for the improvement of healthcare has become increasingly common. There has been an increasing interest in why improvement initiatives so often fail to eliminate the problems they aspire to solve. Benchmarking comes with its fair share of challenges and problems, such as capturing the dynamics and complexities of the care environments, among others. In this study, we demonstrate how learning-oriented, voluntary benchmarks in the complex environment of public healthcare could be designed. Findings: Our four most important findings were the following: first, important organizational learning (OL) regarding the complexity of the service and implications on how to design a benchmark for learning and improvement occurred during the process. Second, participation by a wide range of professionals and stakeholders was crucial for capturing the complexity of people and organizations and increasing the quality of the template. Third, the continuous dialogue between all organizations involved was an important tool for ongoing organizational learning throughout the process. The last important finding was the impact of the facilitator’s role through supporting progress, coordination, and dialogue. Design: We chose participatory design as the research design. Data were derived from written materials such as e-mails, protocols, observational notes, and reflection notes collected during a period of 1.5 years. Originality: Our main contributions are the identification of important strategies, initiatives, and actors to involve when designing voluntary benchmarks for learning and improvement.Keywords: organizational learning, quality improvement, learning-oriented benchmark, healthcare, patient safety
Procedia PDF Downloads 11113917 The Presence of Investor Overconfidence in the South African Exchange Traded Fund Market
Authors: Damien Kunjal, Faeezah Peerbhai
Abstract:
Despite the increasing popularity of exchange-traded funds (ETFs), ETF investment choices may not always be rational. Excess trading volume, misevaluations of securities, and excess return volatility present in financial markets can be attributed to the influence of the overconfidence bias. Whilst previous research has explored the overconfidence bias in stock markets; this study focuses on trading in ETF markets. Therefore, the objective of this study is to investigate the presence of investor overconfidence in the South African ETF market. Using vector autoregressive models, the lead-lag relationship between market turnover and the market return is examined for the market of South African ETFs tracking domestic benchmarks and for the market of South African ETFs tracking international benchmarks over the period November 2000 till August 2019. Consistent with the overconfidence hypothesis, a positive relationship between current market turnover and lagged market return is found for both markets, even after controlling for market volatility and cross-sectional dispersion. This relationship holds for both market and individual ETF turnover suggesting that investors are overconfident when trading in South African ETFs tracking domestic benchmarks and South African ETFs tracking international benchmarks since trading activity depends on past market returns. Additionally, using the global recession as a structural break, this study finds that investor overconfidence is more pronounced after the global recession suggesting that investors perceive ETFs as risk-reducing assets due to their diversification benefits. Overall, the results of this study indicate that the overconfidence bias has a significant influence on ETF investment choices, therefore, suggesting that the South African ETF market is inefficient since investors’ decisions are based on their biases. As a result, the effect of investor overconfidence can account for the difference between the fair value of ETFs and its current market price. This finding has implications for policymakers whose responsibility is to promote the efficiency of the South African ETF market as well as ETF investors and traders who trade in the South African ETF market.Keywords: exchange-traded fund, market return, market turnover, overconfidence, trading activity
Procedia PDF Downloads 16213916 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation
Authors: Desmond Young
Abstract:
In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.Keywords: energy, ADMD, electrical load assessment, energy benchmarks
Procedia PDF Downloads 11013915 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 38513914 Cakrawala Baca Transformation Model into Social Enterprise: A Benchmark Approach from Socentra Agro Mandiri (SAM) and Agritektur
Authors: Syafinatul Fitri
Abstract:
Cakrawala Baca is one of social organization in Indonesia that realize to transform its organization into social enterprise to create more sustainable organization that result more sustainable social impact. Cakrawala Baca implements voluntary system for its organization and it has passive social target. It funds its program by several fund rising activities that depend on donors or sponsor. Therefore social activity that held does not create sustainable social impact. It is different with social enterprise that usually more independent in funding its activity through social business and implement active social target and professional work for organization member. Therefore social enterprise can sustain its organization and then able to create sustainable social impact. Developing transformation model from social movement into social enterprise is the focus of this study. To achieve the aim of study, benchmark approach from successful social enterprise in Indonesia that has previously formed as social movement is employed. The benchmark is conducted through internal and external scanning that result the understanding of how they transformed into social enterprise. After understanding SAM and Agritektur transformation, transformation pattern is formulated based on their transformation similarities. This transformation pattern will be implemented to formulate the transformation plan for Cakrawala Baca to be a social enterprise.Keywords: social movement/social organization, non-profit organization (NPO), social enterprise, transformation, Benchmarks approach
Procedia PDF Downloads 50613913 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization
Procedia PDF Downloads 36613912 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture
Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk
Abstract:
Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization
Procedia PDF Downloads 37613911 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 12813910 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 47313909 Flocking Swarm of Robots Using Artificial Innate Immune System
Authors: Muneeb Ahmad, Ali Raza
Abstract:
A computational method inspired by the immune system (IS) is presented, leveraging its shared characteristics of robustness, fault tolerance, scalability, and adaptability with swarm intelligence. This method aims to showcase flocking behaviors in a swarm of robots (SR). The innate part of the IS offers a variety of reactive and probabilistic cell functions alongside its self-regulation mechanism which have been translated to enable swarming behaviors. Although, the research is specially focused on flocking behaviors in a variety of simulated environments using e-puck robots in a physics-based simulator (CoppeliaSim); the artificial innate immune system (AIIS) can exhibit other swarm behaviors as well. The effectiveness of the immuno-inspired approach has been established with extensive experimentations, for scalability and adaptability, using standard swarm benchmarks as well as the immunological regulatory functions (i.e., Dendritic Cells’ Maturity and Inflammation). The AIIS-based approach has proved to be a scalable and adaptive solution for emulating the flocking behavior of SR.Keywords: artificial innate immune system, flocking swarm, immune system, swarm intelligence
Procedia PDF Downloads 10313908 Developing a Knowledge-Based Lean Six Sigma Model to Improve Healthcare Leadership Performance
Authors: Yousuf N. Al Khamisi, Eduardo M. Hernandez, Khurshid M. Khan
Abstract:
Purpose: This paper presents a model of a Knowledge-Based (KB) using Lean Six Sigma (L6σ) principles to enhance the performance of healthcare leadership. Design/methodology/approach: Using L6σ principles to enhance healthcare leaders’ performance needs a pre-assessment of the healthcare organisation’s capabilities. The model will be developed using a rule-based approach of KB system. Thus, KB system embeds Gauging Absence of Pre-requisite (GAP) for benchmarking and Analytical Hierarchy Process (AHP) for prioritization. A comprehensive literature review will be covered for the main contents of the model with a typical output of GAP analysis and AHP. Findings: The proposed KB system benchmarks the current position of healthcare leadership with the ideal benchmark one (resulting from extensive evaluation by the KB/GAP/AHP system of international leadership concepts in healthcare environments). Research limitations/implications: Future work includes validating the implementation model in healthcare environments around the world. Originality/value: This paper presents a novel application of a hybrid KB combines of GAP and AHP methodology. It implements L6σ principles to enhance healthcare performance. This approach assists healthcare leaders’ decision making to reach performance improvement against a best practice benchmark.Keywords: Lean Six Sigma (L6σ), Knowledge-Based System (KBS), healthcare leadership, Gauge Absence Prerequisites (GAP), Analytical Hierarchy Process (AHP)
Procedia PDF Downloads 16513907 Influential Health Care System Rankings Can Conceal Maximal Inequities: A Simulation Study
Authors: Samuel Reisman
Abstract:
Background: Comparative rankings are increasingly used to evaluate health care systems. These rankings combine discrete attribute rankings into a composite overall ranking. Health care equity is a component of overall rankings, but excelling in other categories can counterbalance low inequity grades. Highly ranked inequitable health care would commend systems that disregard human rights. We simulated the ranking of a maximally inequitable health care system using a published, influential ranking methodology. Methods: We used The Commonwealth Fund’s ranking of eleven health care systems to simulate the rank of a maximally inequitable system. Eighty performance indicators were simulated, assuming maximal ineptitude in equity benchmarks. Maximal rankings in all non-equity subcategories were assumed. Subsequent stepwise simulations lowered all non-equity rank positions by one. Results: The maximally non-equitable health care system ranked first overall. Three subsequent stepwise simulations, lowering non-equity rankings by one, each resulted in an overall ranking within the top three. Discussion: Our results demonstrate that grossly inequitable health care systems can rank highly in comparative health care system rankings. These findings challenge the validity of ranking methodologies that subsume equity under broader benchmarks. We advocate limiting maximum overall rankings of health care systems to their individual equity rankings. Such limits are logical given the insignificance of health care system improvements to those lacking adequate health care.Keywords: global health, health equity, healthcare systems, international health
Procedia PDF Downloads 39913906 Apollo Clinical Excellence Scorecard (ACE@25): An Initiative to Drive Quality Improvement in Hospitals
Authors: Anupam Sibal
Abstract:
Whatever is measured tends to improve. With a view to objectively measuring and improving clinical quality across the Apollo Group Hospitals, the initiative of ACE @ 25 (Apollo Clinical Excellence@25) was launched on Jan 09. ACE @ 25 is a clinically balanced scorecard incorporating 25 clinical quality parameters involving complication rates, mortality rates, one-year survival rates and average length of stay after major procedures like liver and renal transplant, CABG, TKR, THR, TURP, PTCA, endoscopy, large bowel resection and MRM covering all major specialties. Also included are hospital acquired infection rates, pain satisfaction and medication errors. Benchmarks have been chosen from the world’s best hospitals. There are weighted scores for outcomes color coded green, orange and red. The cumulative score is 100. Data is reported monthly by 43 Group Hospitals online on the Lighthouse platform. Action taken reports for parameters falling in red are submitted quarterly and reviewed by the board. An audit team audits the data at all locations every six months. Scores are linked to appraisal of the medical head and there is an “ACE @ 25” Champion Award for the highest scorer. Scores for different parameters were variable from green to red at the start of the initiative. Most hospitals showed an improvement in scores over the last four years for parameters where they had showed scores in red or orange at the start of the initiative. The overall scores for the group have shown an increase from 72 in 2010 to 81 in 2015.Keywords: benchmarks, clinical quality, lighthouse, platform, scores
Procedia PDF Downloads 30113905 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization
Procedia PDF Downloads 35313904 Numerical Investigation of Incompressible Turbulent Flows by Method of Characteristics
Authors: Ali Atashbar Orang, Carlo Massimo Casciola
Abstract:
A novel numerical approach for the steady incompressible turbulent flows is presented in this paper. The artificial compressibility method (ACM) is applied to the Reynolds Averaged Navier-Stokes (RANS) equations. A new Characteristic-Based Turbulent (CBT) scheme is developed for the convective fluxes. The well-known Spalart–Allmaras turbulence model is employed to check the effectiveness of this new scheme. Comparing the proposed scheme with previous studies, it is found that the present CBT scheme demonstrates accurate results, high stability and faster convergence. In addition, the local time stepping and implicit residual smoothing are applied as the convergence acceleration techniques. The turbulent flows past a backward facing step, circular cylinder, and NACA0012 hydrofoil are studied as benchmarks. Results compare favorably with those of other available schemes.Keywords: incompressible turbulent flow, method of characteristics, finite volume, Spalart–Allmaras turbulence model
Procedia PDF Downloads 41213903 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 10013902 Resilience and Renewal: Sustainable Tourism Development in Post-Earthquake Marrakech-El Haouz
Authors: Oumayma Hilal
Abstract:
The devastating earthquake in Marrakech-El Haouz in September 2023 underscores the critical need for sustainable tourism practices. This study proposes innovative approaches to territory tourism, prioritizing resilient and sustainable development to aid recovery and empower local communities. Using a mixed-methods approach, the research evaluates post-earthquake tourism impacts, gathers local perspectives, and benchmarks global models for disaster recovery through tourism. The paper aims to offer practical, community-centric tourism initiatives, integrated with strategic communication strategies, to enhance socio-economic welfare and ensure long-term resilience. The findings are expected to contribute significantly to sustainable tourism literature in post-disaster contexts and provide actionable strategies for the revitalization of the Marrakech-El Haouz region.Keywords: sustainable tourism, community development, Marrakech El Haouz, communication strategies, territory tourism, sustainable tourism, community development
Procedia PDF Downloads 5313901 Creation of Computerized Benchmarks to Facilitate Preparedness for Biological Events
Abstract:
Introduction: Communicable diseases and pandemics pose a growing threat to the well-being of the global population. A vital component of protecting the public health is the creation and sustenance of a continuous preparedness for such hazards. A joint Israeli-German task force was deployed in order to develop an advanced tool for self-evaluation of emergency preparedness for variable types of biological threats. Methods: Based on a comprehensive literature review and interviews with leading content experts, an evaluation tool was developed based on quantitative and qualitative parameters and indicators. A modified Delphi process was used to achieve consensus among over 225 experts from both Germany and Israel concerning items to be included in the evaluation tool. Validity and applicability of the tool for medical institutions was examined in a series of simulation and field exercises. Results: Over 115 German and Israeli experts reviewed and examined the proposed parameters as part of the modified Delphi cycles. A consensus of over 75% of experts was attained for 183 out of 188 items. The relative importance of each parameter was rated as part of the Delphi process, in order to define its impact on the overall emergency preparedness. The parameters were integrated in computerized web-based software that enables to calculate scores of emergency preparedness for biological events. Conclusions: The parameters developed in the joint German-Israeli project serve as benchmarks that delineate actions to be implemented in order to create and maintain an ongoing preparedness for biological events. The computerized evaluation tool enables to continuously monitor the level of readiness and thus strengths and gaps can be identified and corrected appropriately. Adoption of such a tool is recommended as an integral component of quality assurance of public health and safety.Keywords: biological events, emergency preparedness, bioterrorism, natural biological events
Procedia PDF Downloads 42313900 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 8213899 Need for Shariah Screening of Companies in Nigeria: Lessons from Other Jurisdictions
Authors: Aishat Abdul-Qadir Zubair
Abstract:
Background: The absence of Shari’ah screening methodology for companies in Nigeria has further engineered the uncertainty surrounding the acceptability of investing in certain companies by people professing the religion of Islam due to the nature of the activities carried out by these companies. There are some existing shariah screening indices in other jurisdictions whose criteria can be used to check if a company or business is shariah-compliant or not. Examples such as FTSE, DJIM, Standard and Poor to mention just a few. What these indices have tried to do is to ensure that there are benchmarks to check with before investing in companies that carry out mixed activities in their business, wherein some are halal and others may be haram. Purpose: There have been numerous studies on the need to adopt certain screening methodologies as well as call for new methods in screening companies for shariah compliance in order to suit the investments needs of Muslims in other jurisdictions. It is, however, unclear how suitable these methodologies will be to Nigeria. This paper, therefore, seeks to address this gap to consider an appropriate screening methodology to be employed in Nigeria, drawing from the experience of other jurisdictions. Methods: This study employs a triangulation of both quantitative and qualitative methods to analyze the need for Shari’ah screening of companies in Nigeria. The qualitative method is used by way of ijtihad, and this study tries to apply some Islamic Principles of Maqasid al-shari’ah as well as Qawaid al-Fiqiyyah to analyze activities of companies in order to ensure that they are indeed Shari’ah compliant. In addition, using the quantitative data gathered from the interview survey, the perspective of the investors with regards to the need for Shari’ah screening of companies in Nigeria is further analyzed. Results: The result of the study shows that there is a lack of awareness from the teeming Muslim population in Nigeria on the need for Shari’ah screening of companies in Nigeria. The result further shows that there is the need to take into cognizance the peculiar nature of company activities in Nigeria before any particular Shari’ah screening methodology is adopted and setting the necessary benchmarks. Conclusion and Implications: The study concludes that there is the need to ensure that the conscious Muslims in Nigeria screen companies for Shari’ah compliance so that they can easily identify the companies to invest in. The paper, therefore, recommends that the Nigerian government need to come up with a screening methodology that will suit the peculiar nature of companies in Nigeria. The study thus has a direct implication on the Investment regulatory bodies in Nigeria such as the Securities and Exchange Commission (SEC), Central Bank of Nigeria (CBN) as well as the investor Muslims.Keywords: Shari'ah screening, Muslims, investors, companies
Procedia PDF Downloads 16613898 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 8813897 A Financial Analysis of the Current State of IKEA: A Case Study
Authors: Isabela Vieira, Leonor Carvalho Garcez, Adalmiro Pereira, Tânia Teixeira
Abstract:
In the present work, we aim to analyse IKEA as a company, by focusing on its development, financial analysis and future benchmarks, as well as applying some of the knowledge learned in class, namely hedging and other financial risk mitigation solutions, to understand how IKEA navigates and protects itself from risk. The decision that led us to choose IKEA for our casework has to do with the long history of the company since the 1940s and its high internationalization in 63 different markets. The company also has clear financial reports which aided us in the making of the present essay and naturally, was a factor that contributed to our decision.Keywords: Ikea, financial risk, risk management, hedge
Procedia PDF Downloads 5113896 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 13013895 Seismic Design Approach for Areas with Low Seismicity
Authors: Mogens Saberi
Abstract:
The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures.Keywords: low seismicity, new design approach, earthquakes, Denmark
Procedia PDF Downloads 36413894 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings
Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu
Abstract:
Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.Keywords: calculator, indoor environmental quality (IEQ), residential buildings, 5-star benchmarks
Procedia PDF Downloads 473