Search results for: oil palm shell reinforced concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3280

Search results for: oil palm shell reinforced concrete

340 Foreign Television Programme Contents and Effects on Youths

Authors: Eyitayo Francis Adanlawo

Abstract:

Television is one of humanity’s most important means of communication, a channel through which societal norms and values can be transferred to youths. The imagination created by foreign television programmes ultimately leads to strong emotional responses. Though some foreign films and programmes are educational in nature, the view that the majority of them are inimical to the youths’ positive-believe-system is rife. This has been occasioned by the adoption of repugnant alien cultures, imitation of vulgar slangs, weird hairdo and most visibly an adjustment in values. This study theoretically approaches two research questions: do youths act out the life style of characters seeing in foreign films? Is moral decadence, indiscipline, and vulgar habits being the results of the contents of foreign programmes and films? To establish the basis for relating foreign films watched to social vices as violence, sexual pervasiveness, cultural and traditional moral pollution on youths; Observational learning Theory and Reinnforcement Theory were utilized to answer the research questions and established the effect of foreign films content on youths. We conclude that constant showcasing of violent themes was highly responsible for the upsurge in social vices prevalent among the youths and can destroy the basis of the societal, cultural orientation. Recommendations made range from the need for government to halt the importation of foreign films not censored; the need for local films to portray more positive messages and the need for concrete steps to be taken to eradicate or minimise the use of programme capable of exerting negative influence.

Keywords: media (television), moral decadence, youths, values, observation learning theory, reinforcement theory

Procedia PDF Downloads 232
339 Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age

Authors: V. G. Cappellesso, D. M. G. da Silva, J. A. Arndt, N. dos Santos Petry, A. B. Masuero, D. C. C. Dal Molin

Abstract:

Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.

Keywords: sealf-healing, autogenous, water/cement ratio, curing cycles, test methods

Procedia PDF Downloads 130
338 Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites

Authors: V. K. Srivastava

Abstract:

Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers.

Keywords: agglomeration, elastic modulus, epoxy resin, graphene nanoplatelet, loss modulus, nanohardness, storage modulus

Procedia PDF Downloads 247
337 Factors Affecting on Mid-Career Training for Arab Journalists, United Arab Emirates Case Study

Authors: Maha Abdulmajeed, Nagwa Fahmy

Abstract:

Improving journalism practice in the UAE requires a clear understanding of the mid-career training environment; what Arab journalists’ think about the professional training available to them, what training needs they have and still not achieved, and what factors they think it could help to improve the mid-career training outcomes. This research paper examines the validity and effectiveness of mid-career professional journalistic training in the UAE. The research focuses on Arab journalists’ perceptions and attitudes towards professional training, and the state of journalistic training courses available to them, in comparison to modern trends of professional training. The two main objectives of this paper are to examine how different factors affect the effectiveness of the mid-career training offered to Arab Journalists in UAE, whether they are institutional factories, socio-economic factors, personal factors, etc. Then, to suggest a practical roadmap to improve the mid-career journalism training in the UAE. The research methodology combines qualitative and quantitative approaches. As researchers conduct in-depth interviews with a sample of Arab journalists in the UAE, Media outlets in UAE encompass private and governmental entities, with media products in Arabic and/or English, online and/or offline as well. Besides, content analysis will be applied to the available online and offline journalistic training courses offered to Arab journalists’ in UAE along the past three years. Research outcomes are expected to be helpful and practical to improve professional training in the UAE and to determine comprehensive and concrete criteria to provide up-to-date professional training, and to evaluate its validity. Results and research outcomes can help to better understand the current status of mid-career journalistic training in the UAE, to evaluate it based on studying both; the targeted trainees and the up-to-date journalistic training trends.

Keywords: Arab journalists, Arab journalism culture, journalism practice, journalism and technology

Procedia PDF Downloads 244
336 A Case Study Approach on Co-Constructing the Idea of 'Safety' with Children

Authors: Beng Zhen Yeow

Abstract:

In most work that involves children, the voice of the children is often not heard. This is ironic since a lot of discussions might involve their welfare and safety. It might seem natural that the professionals should hear from them about what they wish for instead of deciding what is best for them. However, this, unfortunately, might be more the exception than the norm in most case and hence in many instances, children are merely 'subjects' in conversations about safety instead of active participants in the construction or creation of safety in the family. There might be many reasons why it does not happen in our work. Firstly, professionals have learnt how to 'socialise' into their professional roles and hence in the process become 'un-childlike'. Secondly, there is also a lack of professional training with regards to how to talk with children. Finally, there might be also a lack of concrete tools and techniques that are developed to facilitate the process. In this paper, the case study method is used to show how the idea of safety could be concretised and discussed with children and their family members, and hence making them active participants and co-creators of their own safety. Specific skills and techniques are highlighted through the case study. In this case, there was improvement in outcomes like no repeated offence or abuse. In addition, children were also able to advocate for their own safety after six months of intervention and how the family members were able to explicitly say what they can do to improve safety. The professionals in the safety network reported significant improvements. On top of that, the abused child who was removed due to child protection concerns, had verbalized observations of change in mother’s parenting abilities, and has requested for home leave to begin due to ownership of safety planning and having confidence to co-create safety for her siblings and herself together with the professionals in the safety network. Children becoming active participants in the co-creation of safety not only serve the purpose in allowing them to own a 'voice' but at the same time, give them greater confidence to protect themselves at home and in other contexts outside of home.

Keywords: partnering for safety, collaborative social work, family and systemic psychotherapy, child protection

Procedia PDF Downloads 103
335 The Aesthetic and Critiques of Weimar Democracy: The Counter and Complement to Carl Schmitt’s Political Myth

Authors: Peter Jin

Abstract:

Ever since the recent resurgence of interest in political theorist Carl Schmitt’s work, much of the current analysis on Schmitt has fo-cused on evaluating Schmitt’s legacy by exposing contradictions in his rationale. Rather than condemn such contradictions, this paper instead seeks to analyze these contradictions in an effort to better understand the radical shift in Schmitt’s intellectual trajectory from an astute critic of liberal democracy to a fascist apologist towards the end of the Weimar period. An essential part of this change is his interest in what Schmitt called ‘the emergence of aesthetics.’ Schmitt diagnosed the underlying issue with the aesthetic in the political sphere to be its irrationalism, indifference, and indeci-siveness. For Schmitt, the latter two of these were especially prob-lematic for two of his key concepts: the ‘political’ and ‘the shared historical reality.’ Schmitt’s radical depiction of ‘the political’ as an existential opposition of allegiances that necessitated a state of emergency and a decisionist sovereign political struggle required an equally radical justification, or Schmitt’s call for ‘a shared his-torical reality’ not based in historical fact yet able to mobilize the masses. In this way, Schmitt clearly condemns the indifferent, indecisive aesthetic that runs against his decisionist, action-oriented political theory. Yet despite his firm stance against aestheticism, Schmitt himself used the evocative and irrational power of aesthet-icism as a tool to present his own ‘political myth’ that compelled believers to join in decisive unity against a common enemy. In short, Schmitt’s contradictions on aestheticism and his creation of a ‘political myth’ suggest that Schmitt’s underlying conflict with aestheticism was not as much of an issue of irrationality as it was a chronic preoccupation with coercing concrete action at the expense of rational deliberation.

Keywords: aesthetics of the political, Carl Schmitt, political myth, Weimar democracy

Procedia PDF Downloads 120
334 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: risk, decision-making, manager, process, analysis, source of risk

Procedia PDF Downloads 238
333 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 174
332 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 133
331 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement

Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh

Abstract:

The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.

Keywords: glass waste, strength properties, cement mortar, environmental friendly

Procedia PDF Downloads 38
330 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 395
329 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.

Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load

Procedia PDF Downloads 288
328 Educational Tours as a Learning Tool to the Third Years Tourism Students of De La Salle University, Dasmarinas

Authors: Jackqueline Uy, Hannah Miriam Verano, Crysler Luis Verbo, Irene Gueco

Abstract:

Educational tours are part of the curriculum of the College of Tourism and Hospitality Management, De La Salle University-Dasmarinas. They are highly significant to the students, especially Tourism students. The purpose of this study was to determine how effective educational tours were as a learning tool using the Experiential Learning Theory by David Kolb. This study determined the demographic profile of the third year tourism students in terms of gender, section, educational tours joined, and monthly family income and lastly, this study determined if there is a significant difference between the demographic profile of the respondents and their assessment of educational tours as a learning tool. The researchers used a historical research design with the third-year students of the bachelor of science in tourism management as the population size and used a random sampling method. The researchers made a survey questionnaire and utilized statistical tools such as weighted mean, frequency distribution, percentage, standard deviation, T-test, and ANOVA. The result of the study answered the profile of the respondents such as the gender, section, educational tour/s joined, and family monthly income. The findings of the study showed that the 3rd year tourism management students strongly agree that educational tours are a highly effective learning tool in terms of active experimentation, concrete experience, reflective observation, and abstract conceptualisation based on the data gathered from the respondents.

Keywords: CTHM, educational tours, experiential learning theory, De La Salle University Dasmarinas, tourism

Procedia PDF Downloads 142
327 Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus)

Authors: L. Vafaei, McDominic Eze

Abstract:

The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum.

Keywords: heat insulation, hollow bricks, south facing, Ytong bricks wall

Procedia PDF Downloads 243
326 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling

Procedia PDF Downloads 37
325 The Communist Party of China’s Approach to Human Rights and the Death Penalty in China since 1979

Authors: Huang Gui

Abstract:

The issues of human rights and death penalty are always drawing attentions from international scholars, critics and observers, activities and Chinese scholars, and most of them looking at these problems are just doing with such legal or political from a single perspective, but the real relationship between Chinese political regime and legislation is often ignored. In accordance with the Constitution of P.R.C., Communist Party of China (CPC) does not merely play a key role in political field, but in legislation and law enforcement as well. Therefore, the legislation has to implement the party’s theory and outlook, and realize the party’s policies. So is the death penalty system, though it is only concrete punishment system. Considering this point, basic upon the introducing the relationship between CPC and legislation, this paper would like to explore the shifting of CPC’s outlook on human rights and the death penalty system changes in different eras. In Maoist era, the issue of human rights was rejected and deemed as an exclusion zone, and the death penalty was unjustifiably imposed; human rights were politically recognized and accepted in Deng era, but CPC has its own viewpoints on it. CPC emphasized on national security and stability in that era, and the individual human rights weren’t taken correspondingly and reasonably account of. The death penalty was abused and deemed as an important measure to control crime. In post-Deng, human rights were gradually developed and recognized. The term of ‘state respect and protect human rights’ is contained in Constitution of P.R.C., and the individual human rights are gradually valued, but the CPC still focus on state security, development, and stability, the individual right to life hasn’t been enough valued like the right to substance. Although the steps of reforming death penalty are taking, there are still 46 crimes punishable by death. CPC should change its outlook and pay more attention to the right to life, and try to abolish death penalty de facto and de jure.

Keywords: criminal law, communist party of China, death penalty, human rights, China

Procedia PDF Downloads 392
324 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction

Procedia PDF Downloads 277
323 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling

Procedia PDF Downloads 43
322 Study on Effectiveness of Strategies to Re-Establish Landscape Connectivity of Expressways with Reference to Southern Expressway Sri Lanka

Authors: N. G. I. Aroshana, S. Edirisooriya

Abstract:

Construction of highway is the most emerging development tendency in Sri Lanka. With these development activities, there are a lot of environmental and social issues started. Landscape fragmentation is one of the main issues that highly effect to the environment by the construction of expressways. Sri Lankan expressway system getting effort to treat fragmented landscape by using highway crossing structures. This paper designates, a highway post construction landscape study on the effectiveness of the landscape connectivity structures to restore connectivity. Geographic Information Systems (GIS), least cost path tool has been used in the selected two plots; 25km alone the expressway to identify animal crossing paths. Animal accident data use as measure for determining the most contributed plot for landscape connectivity. Number of patches, Mean patch size, Class area use as a parameter to determine the most effective land use class to reestablish the landscape connectivity. The findings of the research express scrub, grass and marsh were the most positively affected land use typologies for increase the landscape connectivity. It represents the growth increased by 8% within the 12 years of time. From the least cost analysis within the plot one, 28.5% of total animal crossing structures are within the high resistance land use classes. Southern expressway used reinforced compressed earth technologies for construction. It has been controlled the growth of the climax community. According to all findings, it could assume that involvement of the landscape crossing structures contributes to re-establish connectivity, but it is not enough to restore the majority of disturbance performed by the expressway. Connectivity measures used within the study can use as a tool for re-evaluate future involvement of highway crossing structures. Proper placement of the highway crossing structures leads to increase the rate of connectivity. The study recommends that monitoring the all stages (preconstruction, construction and post construction) of the project and preliminary design, and the involvement of the research applied connectivity assessment strategies helps to overcome the complication regarding the re-establishment of landscape connectivity using the highway crossing structures that facilitate the growth of flora and fauna.

Keywords: landscape fragmentation, least cost path, land use analysis, landscape connectivity structures

Procedia PDF Downloads 130
321 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society

Authors: Azusa Katsumata

Abstract:

Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.

Keywords: career education of university, excursion, learning platform, problems of society

Procedia PDF Downloads 240
320 Flooring Solution for Sports Courts Such as Ecological Mortar

Authors: Helida T. G. Soares, Antonio J. P. da Silva

Abstract:

As the society develops, the accumulation of solid waste in landfills, in the environment, and the depletion of the raw material increases. In this way, there is relevance in researching the interaction between the environmental management and civil construction; therefore, this project has for scope the analysis and the effects of the rubber microparticles use as a small aggregate added to the sand, producing an ecological mortar for the pavement constitution, from the mixture of a paste, composed of Portland cement and water, and its application in sports courts. It was used the detailed reutilization of micro rubber in its most primordial, micro form, highlighting the powder pattern as the additional balancing of the mortar, analyzing the evolution of the mechanical properties. Percentages of 5, 10 and 15% rubber were used based on the total mass of the trace, where there is no removal of aggregates or cement, only increment of the rubber. The results obtained through the mechanical test of simple compression showed that the rubber, added to the mortar, presents low mechanical resistance compared to the reference trait, the study of this subject is vast of possibilities to be explored. In this sense, we seek sustainability and innovation from the use of an ecological material, thus adding value and reducing the impact of this material on the environment. The manufacturing process takes place from the direct mixing of cement paste and rubber, whether manually, mechanically or industrially. It results in the production of a low-cost mortar, through the use of recycled rubber, with high efficiency in general properties, such as compressive strength and friction coefficient, allowing its use for the construction of floors for sports courts with high durability. Thus, it is possible to reuse this micro rubber residue in other applications in simple concrete artifacts.

Keywords: civil construction, ecological mortar, high efficiency, rubber

Procedia PDF Downloads 120
319 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 35
318 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 137
317 A Voice Retrieved from the Holocaust in New Journalism in Kazuo Ishiguro's the Remains of the Day

Authors: Masami Usui

Abstract:

Kazuo Ishiguro’s The Remains of the Day (1989) underlines another holocaust, an imprisonment of human life, dignity, and self in the globalizing sphere of the twentieth century. The Remains of the Day delineates the invisible and cruel space of “lost and found” in the postcolonial and post-imperial discourse of this century, that is, the Holocaust. The context of the concentration camp or wartime imprisonment such as Auschwitz is transplanted into the public sphere of modern England, Darlington Hall. The voice is retrieved and expressed by the young journalist and heir of Darlington Hall, Mr. David Cardinal. The new media of journalism is an intruder at Darlington Hall and plays a role in revealing the wrongly-input ideology. “Lost and Found” consists of the private and public retrieved voices. Stevens’ journey in 1956 is a return to the past, especially the period between 1935 and 1936. Lost time is retrieved on his journey; yet lost life cannot be revived entirely in his remains of life. The supreme days of Darlington Hall are the terrifying days caused by the Nazis. Fascism, terrorism, and militarism destroyed the wholesomeness of the globe. Into blind Stevens, both Miss Kenton and Mr. Cardinal bring out the common issue, that is, the political conflicts caused by Nazis. Miss Kenton expresses her own ideas against anti-Semitism regarding the Jewish maids in the crucial time when Sir Oswald Mosley’s Blackshirts organization attacked the Anglo Jews between 1935 and 1936. Miss Kenton’s half-muted statement is reinforced and assured by Cardinal in his mention of the 1934 Olympic Rally threatened by Mosley’s Blackshirts. Cardinal’s invasion of Darlington Hall embodies the increasing tension of international politics related to World War II. Darlington Hall accommodates the crucial political issue that definitely influences the fate of the house, its residents, and the nation itself and that is retrieved in the newly progressive and established media.

Keywords: modern English literature, culture studies, communication, history

Procedia PDF Downloads 553
316 An Initial Assessment of the Potential Contibution of 'Community Empowerment' to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Authors: Arzyana Sunkar, Yanto Santosa, Siti Badriyah Rushayati

Abstract:

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an in-depth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oil-palm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of socio-cultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment

Keywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil – Bukit Batu Biosphere Reserve

Procedia PDF Downloads 330
315 Analysis of Kilistra (Gokyurt) Settlement within the Context of Traditional Residential Architecture

Authors: Esra Yaldız, Tugba Bulbul Bahtiyar, Dicle Aydın

Abstract:

Humans meet their need for shelter via housing which they structure in line with habits and necessities. In housing culture, traditional dwelling has an important role as a social and cultural transmitter. It provides concrete data by being planned in parallel with users’ life style and habits, having their own dynamics and components as well as their designs in harmony with nature, environment and the context they exist. Textures of traditional dwelling create a healthy and cozy living environment by means of adaptation to natural conditions, topography, climate, and context; utilization of construction materials found nearby and usage of traditional techniques and forms; and natural isolation of construction materials used. One of the examples of traditional settlements in Anatolia is Kilistra (Gökyurt) settlement of Konya province. Being among the important centers of Christianity in the past, besides having distinctive architecture, culture, natural features, and geographical differences (climate, geological structure, material), Kilistra can also be identified as a traditional settlement consisting of family, religious and economic structures as well as cultural interaction. The foundation of this study is the traditional residential texture of Kilistra with its unique features. The objective of this study is to assess the conformity of traditional residential texture of Kilistra with present topography, climatic data, and geographical values within the context of human scale construction, usage of green space, indigenous construction materials, construction form, building envelope, and space organization in housing.

Keywords: traditional residential architecture, Kilistra, Anatolia, Konya

Procedia PDF Downloads 383
314 Using Inverted 4-D Seismic and Well Data to Characterise Reservoirs from Central Swamp Oil Field, Niger Delta

Authors: Emmanuel O. Ezim, Idowu A. Olayinka, Michael Oladunjoye, Izuchukwu I. Obiadi

Abstract:

Monitoring of reservoir properties prior to well placements and production is a requirement for optimisation and efficient oil and gas production. This is usually done using well log analyses and 3-D seismic, which are often prone to errors. However, 4-D (Time-lapse) seismic, incorporating numerous 3-D seismic surveys of the same field with the same acquisition parameters, which portrays the transient changes in the reservoir due to production effects over time, could be utilised because it generates better resolution. There is, however dearth of information on the applicability of this approach in the Niger Delta. This study was therefore designed to apply 4-D seismic, well-log and geologic data in monitoring of reservoirs in the EK field of the Niger Delta. It aimed at locating bypassed accumulations and ensuring effective reservoir management. The Field (EK) covers an area of about 1200km2 belonging to the early (18ma) Miocene. Data covering two 4-D vintages acquired over a fifteen-year interval were obtained from oil companies operating in the field. The data were analysed to determine the seismic structures, horizons, Well-to-Seismic Tie (WST), and wavelets. Well, logs and production history data from fifteen selected wells were also collected from the Oil companies. Formation evaluation, petrophysical analysis and inversion alongside geological data were undertaken using Petrel, Shell-nDi, Techlog and Jason Software. Well-to-seismic tie, formation evaluation and saturation monitoring using petrophysical and geological data and software were used to find bypassed hydrocarbon prospects. The seismic vintages were interpreted, and the amounts of change in the reservoir were defined by the differences in Acoustic Impedance (AI) inversions of the base and the monitor seismic. AI rock properties were estimated from all the seismic amplitudes using controlled sparse-spike inversion. The estimated rock properties were used to produce AI maps. The structural analysis showed the dominance of NW-SE trending rollover collapsed-crest anticlines in EK with hydrocarbons trapped northwards. There were good ties in wells EK 27, 39. Analysed wavelets revealed consistent amplitude and phase for the WST; hence, a good match between the inverted impedance and the good data. Evidence of large pay thickness, ranging from 2875ms (11420 TVDSS-ft) to about 2965ms, were found around EK 39 well with good yield properties. The comparison between the base of the AI and the current monitor and the generated AI maps revealed zones of untapped hydrocarbons as well as assisted in determining fluids movement. The inverted sections through EK 27, 39 (within 3101 m - 3695 m), indicated depletion in the reservoirs. The extent of the present non-uniform gas-oil contact and oil-water contact movements were from 3554 to 3575 m. The 4-D seismic approach led to better reservoir characterization, well development and the location of deeper and bypassed hydrocarbon reservoirs.

Keywords: reservoir monitoring, 4-D seismic, well placements, petrophysical analysis, Niger delta basin

Procedia PDF Downloads 99
313 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 12
312 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 46
311 Optimum Design of Dual-Purpose Outriggers in Tall Buildings

Authors: Jiwon Park, Jihae Hur, Kukjae Kim, Hansoo Kim

Abstract:

In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: concrete structure, optimization, outrigger, tall building

Procedia PDF Downloads 152