Search results for: power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8814

Search results for: power generation

5904 Optimal Design of Wind Turbine Blades Equipped with Flaps

Authors: I. Kade Wiratama

Abstract:

As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.

Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero

Procedia PDF Downloads 337
5903 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.

Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather

Procedia PDF Downloads 165
5902 Maintaining Organizational Harmony: The Way Forward in Ghanaian Basic Schools

Authors: Dominic Kwaku Danso Mensah

Abstract:

The study examined conflict management strategies among head teachers and teachers in selected basic schools in Okai-Koi sub metro in the greater region of Ghana. In all, 270 participants were engaged in the study, comprising 237 teachers, 32 head teachers, and one officer in charge of the Metropolis. The study employed descriptive survey while using purposive and simple random sampling techniques to sample participants. Interview guides and questionnaires were the main instruments used for gathering primary data. The study found that conflict is inevitable in the schools. Conflicts in schools are usually subtle and hardly noticed by outsiders even though they occur on daily basis. The causes of conflict include among other things, high expectation from head teachers, inability to attain goals set, communication from head teachers and power struggle. The study found out that, in managing and resolving conflicts, issues such as identifying and focusing on the problem, building of trust and cooperation, clarifying goals and objectives were seen to be effective means of managing conflict and recommended that management should design and develop conflict management strategies to quickly resolve conflict.

Keywords: basic education, conflict management, organizational harmony, power

Procedia PDF Downloads 289
5901 The Online Power of Values: Adolescents’ Values as Predicting Factors of Their Online Bystanders’ Behavior While Witnessing Cyberbullying

Authors: Sharon Cayzer-Haller, Shir Ginosar-Yaari, Ariel Knafo-Noam

Abstract:

The 21st century emerged as the digital century, and it is marked by a wide range of technological developments and changes, followed by potential changes in human communication skills. This technological revolution has changed human means of communication in many different ways: children and adolescents are spending much of their time in front of screens, participating in all sorts of online activities (even more so since the outbreak of COVID-19). The current study focuses on the role of values in adolescents' online bystanders' behavior. Values are cognitive, abstract representations of desirable goals that motivate behavior, and we hypothesized finding significant associations between specific values and differential online bystanders' feelings and behavior. Data was collected through online questionnaires that measured the participants' values, using Schwartz's short version of the Portrait Values Questionnaire (Schwartz, 2012). Participants’ online behavior was assessed in a questionnaire addressing reactions to situations of cyber shaming and cyberbullying, and specifically positive feelings and pro-social behavior (e.g., more supportive reactions) toward the victims, as opposed to different offensive behavioral reactions (such as laughing at the victim or ignoring the situation). Participants were recruited with a commercial research panel company, and 308 Israeli adolescents' values and online behavior were examined (mean age 15.2). As hypothesized, results show significant associations between self-transcendence values (universalism and benevolence) and conservation values (conformity, tradition, and security). These two groups of values were positively correlated with pro-social bystanders' feelings and behavior. On the opposite side of the values scale, the value of power was negatively associated with the participants' pro-social behavior, and positively associated with offensive behavioral reactions. Further research is needed, but we conclude that values serve as crucial guiding factors in directing adolescents' online feelings and behavior.

Keywords: adolescents, values, cyberbullying, online behavior, power

Procedia PDF Downloads 66
5900 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission

Authors: Alex B. Cusick

Abstract:

The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.

Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions

Procedia PDF Downloads 171
5899 Instability of H2-O2-CO2 Premixed Flames on Flat Burner

Authors: Kaewpradap Amornrat, Endo Takahiro, Kadowaki Satoshi

Abstract:

The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner.

Keywords: instability, H2-O2-CO2 combustion, flat burner, diffusive-thermal instability

Procedia PDF Downloads 361
5898 Examining Electroencephalographic Activity Differences Between Goalkeepers and Forwards in Professional Football Players

Authors: Ruhollah Basatnia, Ali Reza Aghababa, Mehrdad Anbarian, Sara Akbari, Mohammad Khazaee

Abstract:

Introduction: The investigation of brain activity in sports has become a subject of interest for researchers. Several studies have examined the patterns or differences in brain activity during different sports situations. Previous studies have suggested that the pattern of cortical activity may differ between different football positions, such as goalkeepers and other players. This study aims to investigate the differences in electroencephalographic (EEG) activity between the positions of goalkeeper and forward in professional football players. Methods: Fourteen goalkeepers and twelve forwards, all males between 19-28 years old, participated in the study. EEG activity was recorded while participants were sitting with their eyes closed for 5 minutes. The mean relative power of EEG activity for each frequency band was compared between the two groups using independent samples t-test. Findings: The study found significant differences in the relative power of EEG activity between different frequency bands and electrodes. Notably, significant differences were observed in the mean relative power of EEG activity between the two groups for certain frequency bands and electrodes. These findings suggest that EEG activity can serve as a sensory indicator for cognitive and performance differences between goalkeepers and forwards in football players. Discussion: The results of this study suggest that EEG activity can be used to identify cognitive and performance differences between goalkeepers and forwards in football players. However, further research is needed to establish the relationship between EEG activity and actual performance in the field. Future studies should investigate the potential influence of other factors, such as fatigue and stress, on the EEG activity of football players. Additionally, the use of real-time EEG feedback could be explored as a tool for training and performance optimization in football players. Further research is required to fully understand the potential of EEG activity as a sensory indicator for cognitive and performance differences between football player positions and to explore its potential applications for training and performance optimization in football and other sports.

Keywords: football, brain activity, EEG, goalkeepers, forwards

Procedia PDF Downloads 84
5897 Collaborative Energy Optimization for Multi-Microgrid Distribution System Based on Two-Stage Game Approach

Authors: Hanmei Peng, Yiqun Wang, Mao Tan, Zhuocen Dai, Yongxin Su

Abstract:

Efficient energy management in multi-microgrid distribution systems holds significant importance for enhancing the economic benefits of regional power grids. To better balance conflicts among various stakeholders, a two-stage game-based collaborative optimization approach is proposed in this paper, effectively addressing the realistic scenario involving both competition and collaboration among stakeholders. The first stage, aimed at maximizing individual benefits, involves constructing a non-cooperative tariff game model for the distribution network and surplus microgrid. In the second stage, considering power flow and physical line capacity constraints we establish a cooperative P2P game model for the multi-microgrid distribution system, and the optimization involves employing the Lagrange method of multipliers to handle complex constraints. Simulation results demonstrate that the proposed approach can effectively improve the system economics while harmonizing individual and collective rationality.

Keywords: cooperative game, collaborative optimization, multi-microgrid distribution system, non-cooperative game

Procedia PDF Downloads 71
5896 Energy Interaction among HVAC and Supermarket Environment

Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.

Keywords: energy interaction, HVAC, R-value, supermarket buildings

Procedia PDF Downloads 428
5895 PVMODREL© Development Based on Reliability Evaluation of a PV Module Using Accelerated Degradation Testing

Authors: Abderafi Charki, David Bigaud

Abstract:

The aim of this oral speach is to present the PVMODREL© (PhotoVoltaic MODule RELiability) new software developed in the University of Angers. This new tool permits us to evaluate the lifetime and reliability of a PV module whatever its geographical location and environmental conditions. The electrical power output of a PV module decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated. An example using the damp heat test is shown to demonstrate the usefulness PVMODREL.

Keywords: lifetime, reliability, PV Module, accelerated life testing, accelerated degradation testing

Procedia PDF Downloads 575
5894 Measuring Firms’ Patent Management: Conceptualization, Validation, and Interpretation

Authors: Mehari Teshome, Lara Agostini, Anna Nosella

Abstract:

The current knowledge-based economy extends intellectual property rights (IPRs) legal research themes into a more strategic and organizational perspectives. From the diverse types of IPRs, patents are the strongest and well-known form of legal protection that influences commercial success and market value. Indeed, from our pilot survey, we understood that firms are less likely to manage their patents and actively used it as a tool for achieving competitive advantage rather they invest resource and efforts for patent application. To this regard, the literature also confirms that insights into how firms manage their patents from a holistic, strategic perspective, and how the portfolio value of patents can be optimized are scarce. Though patent management is an important business tool and there exist few scales to measure some dimensions of patent management, at the best of our knowledge, no systematic attempt has been made to develop a valid and comprehensive measure of it. Considering this theoretical and practical point of view, the aim of this article is twofold: to develop a framework for patent management encompassing all relevant dimensions with their respective constructs and measurement items, and to validate the measurement using survey data from practitioners. Methodology: We used six-step methodological approach (i.e., specify the domain of construct, item generation, scale purification, internal consistency assessment, scale validation, and replication). Accordingly, we carried out a systematic review of 182 articles on patent management, from ISI Web of Science. For each article, we mapped relevant constructs, their definition, and associated features, as well as items used to measure these constructs, when provided. This theoretical analysis was complemented by interviews with experts in patent management to get feedbacks that are more practical on how patent management is carried out in firms. Afterwards, we carried out a questionnaire survey to purify our scales and statistical validation. Findings: The analysis allowed us to design a framework for patent management, identifying its core dimensions (i.e., generation, portfolio-management, exploitation and enforcement, intelligence) and support dimensions (i.e., strategy and organization). Moreover, we identified the relevant activities for each dimension, as well as the most suitable items to measure them. For example, the core dimension generation includes constructs as: state-of-the-art analysis, freedom-to-operate analysis, patent watching, securing freedom-to-operate, patent potential and patent-geographical-scope. Originality and the Study Contribution: This study represents a first step towards the development of sound scales to measure patent management with an overarching approach, thus laying the basis for developing a recognized landmark within the research area of patent management. Practical Implications: The new scale can be used to assess the level of sophistication of the patent management of a company and compare it with other firms in the industry to evaluate their ability to manage the different activities involved in patent management. In addition, the framework resulting from this analysis can be used as a guide that supports managers to improve patent management in firms.

Keywords: patent, management, scale, development, intellectual property rights (IPRs)

Procedia PDF Downloads 148
5893 The Semiotics of Soft Power; An Examination of the South Korean Entertainment Industry

Authors: Enya Trenholm-Jensen

Abstract:

This paper employs various semiotic methodologies to examine the mechanism of soft power. Soft power refers to a country’s global reputation and their ability to leverage that reputation to achieve certain aims. South Korea has invested heavily in their soft power strategy for a multitude of predominantly historical and geopolitical reasons. On account of this investment and the global prominence of their strategy, South Korea was considered to be the optimal candidate for the aims of this investigation. Having isolated the entertainment industry as one of the most heavily funded segments of the South Korean soft power strategy, the analysis restricted itself to this sector. Within this industry, two entertainment products were selected as case studies. The case studies were chosen based on commercial success according to metrics such as streams, purchases, and subsequent revenue. This criterion was deemed to be the most objective and verifiable indicator of the products general appeal. The entertainment products which met the chosen criterion were Netflix’ “Squid Game” and BTS’ hit single “Butter”. The methodologies employed were chosen according to the medium of the entertainment products. For “Squid Game,” an aesthetic analysis was carried out to investigate how multi- layered meanings were mobilized in a show popularized by its visual grammar. To examine “Butter”, both music semiology and linguistic analysis were employed. The music section featured an analysis underpinned by denotative and connotative music semiotic theories borrowing from scholars Theo van Leeuwen and Martin Irvine. The linguistic analysis focused on stance and semantic fields according to scholarship by George Yule and John W. DuBois. The aesthetic analysis of the first case study revealed intertextual references to famous artworks, which served to augment the emotional provocation of the Squid Game narrative. For the second case study, the findings exposed a set of musical meaning units arranged in a patchwork of familiar and futuristic elements to achieve a song that existed on the boundary between old and new. The linguistic analysis of the song’s lyrics found a deceptively innocuous surface level meaning that bore implications for authority, intimacy, and commercial success. Whether through means of visual metaphor, embedded auditory associations, or linguistic subtext, the collective findings of the three analyses exhibited a desire to conjure a form of positive arousal in the spectator. In the synthesis section, this process is likened to that of branding. Through an exploration of branding, the entertainment products can be understood as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept. Limitations in the form of a timeframe biased perspective are addressed, and directions for future research are suggested. This paper employs semiotic methodologies to examine two entertainment products as mechanisms of soft power. Through means of visual metaphor, embedded auditory associations, or linguistic subtext, the findings reveal a desire to conjure positive arousal in the spectator. The synthesis finds similarities to branding, thus positioning the entertainment products as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept.

Keywords: BTS, cognitive semiotics, entertainment, soft power, south korea, squid game

Procedia PDF Downloads 154
5892 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan

Authors: Yi-Hao Pai, Wen-Feng Chen

Abstract:

The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.

Keywords: agricultural waste, gasification, energy conversion, pomelo garden

Procedia PDF Downloads 142
5891 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate

Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi

Abstract:

Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.

Keywords: biodegradable, healthy environment, integrated solid waste management, municipal

Procedia PDF Downloads 15
5890 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 361
5889 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review

Authors: Melake Kuflom

Abstract:

European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.

Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources

Procedia PDF Downloads 206
5888 Growth of Droplet in Radiation-Induced Plasma of Own Vapour

Authors: P. Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution

Procedia PDF Downloads 441
5887 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 224
5886 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 323
5885 The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance

Authors: Chun Pao Kuo, Chi Tong Lin

Abstract:

The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel.

Keywords: diesel engine, exhaust pollution, fuel injection timing, tire pyrolysis oil

Procedia PDF Downloads 408
5884 Hydrodynamic Study of Laminar Flow in Agitated Vessel by a Curved Blade Agitator

Authors: A. Benmoussa, M. Bouanini, M. Rebhi

Abstract:

The mixing and agitation of fluid in stirred tank is one of the most important unit operations for many industries such as chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore, determining the level of mixing and overall behaviour and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective is the knowledge of the hydrodynamic behaviour and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role.

Keywords: agitated tanks, curved blade agitator, laminar flow, CFD modelling

Procedia PDF Downloads 416
5883 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 453
5882 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 312
5881 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators

Authors: Engy A. Mohamed, Y. G. Hegazy

Abstract:

This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.

Keywords: comulative distribution function, distributed generation, Monte Carlo

Procedia PDF Downloads 584
5880 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.

Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor

Procedia PDF Downloads 142
5879 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 44
5878 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 139
5877 Inclusion of Students with Disabilities (SWD) in Higher Education Institutions (HEIs): Self-Advocacy and Engagement as Central

Authors: Tadesse Abera

Abstract:

This study aimed to investigate the contribution of self-advocacy and engagement in the inclusion of SWDs in HEIs. A convergent parallel mixed methods design was employed. This article reports the quantitative strand. A total of 246 SWDs were selected through stratified proportionate random sampling technique from five public HEIs in Ethiopia. Data were collected through Self-advocacy questionnaire, student engagement scale, and college student experience questionnaire and analyzed through frequency, percentage, mean, standard deviation, correlation, one sample t-test and multiple regression. Both self-advocacy and engagement were found to have a predictive power on inclusion of respondents in the HEIs, where engagement was found to be more predictor. From the components of self-advocacy, knowledge of self and leadership and from engagement dimensions sense of belonging, cognitive, and valuing in their respective orders were found to have a stronger predictive power on the inclusion of respondents in the institutions. Based on the findings it was concluded that, if students with disabilities work hard to be self-determined, strive for realizing social justice, exert quality effort and seek active involvement, their inclusion in the institutions would be ensured.

Keywords: self-advocacy, engagement, inclusion, students with disabilities, higher education institution

Procedia PDF Downloads 76
5876 The Role of Social Influences and Cultural Beliefs on Perceptions of Postpartum Depression among Mexican Origin Mothers in San Diego

Authors: Mireya Mateo Gomez

Abstract:

The purpose of this study was to examine the perceptions first-generation Mexican origin mothers living in San Diego have on postpartum depression (PPD), with a special focus on social influences and cultural beliefs towards those meanings. This study also aimed to examine possible PPD help-seeking behaviors that first-generation Mexican origin mothers can perform. The Health Belief Model (HBM) and Social Ecological Model (SEM) were the guiding theoretical frameworks for this study. Data for this study were collected from three focus groups, four in-depth interviews, and the distribution of an acculturation survey (ARSMA II). There were a total of 15 participants, in which participant’s mean age was 45, and the mean age migrated to the United States being 22. Most participants identified as being married, born in Southern or Western Mexico, and with a strong Mexican identity in relation to the ARSMA survey. Participants identified four salient PPD perceptions corresponding to the interpersonal level of SEM. These four main perceptions were: 1) PPD affecting the identity of motherhood; 2) PPD being a natural part of a mother’s experience but mitigated by networks; 3) PPD being a U.S. phenomenon due to family and community breakdown; and 4) natural remedies as a preferred PPD treatment. In regard to themes relating to help seeking behaviors, participants identified seven being: 1) seeking help from immediate family members; 2) practicing home remedies; 3) seeking help from a medical professional; 4) obtaining help from a clinic or organization; 5) seeking help from God; 6) participating in PPD support groups; and 7) talking to a friend. It was evident in this study that postpartum depression is not a well discussed topic within the Mexican immigrant population. In relation to the role culture and social influences have on PPD perceptions, most participants shared hearing or learning about PPD from their family members or friends. Participants also stated seeking help from family members if diagnosed with PPD and seeking out home remedies. This study as well provides suggestions to increase the awareness of PPD among the Mexican immigrant community.

Keywords: cultural beliefs, health belief model, Mexican origin mothers, perceptions, postpartum depression social ecological model

Procedia PDF Downloads 151
5875 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 305