Search results for: mechanical and electronic engineering
5026 Experimental and Analytical Study on the Bending Behavior of Concrete-GFRP Hybrid Beams
Authors: Alaa Koaik, Bruno Jurkiewiez, Sylvain Bel
Abstract:
Recently, the use of GFRP pultruded profiles increased in the domain of civil engineering especially in the construction of sandwiched slabs and footbridges. However, under heavy loads, the risk of using these profiles increases due to their high deformability and instability as a result of their weak stiffness and orthotropic nature. A practical solution proposes the assembly of these profiles with concrete slabs to create a stiffer hybrid element to support higher loads. The connection of these two elements is established either by traditional means of steel studs (bolting in our case) or bonding technique. These two techniques have their advantages and disadvantages regarding the mechanical behavior and in-situ implementation. This paper presents experimental results of interface characterization and bending behavior of two hybrid beams, PB7 and PB8, designed and constructed using both connection techniques. The results obtained are exploited to design and build a hybrid footbridge BPBP1 which is tested within service limits (elastic domain). Analytical methods are also developed to analyze the behavior of these structures in the elastic range and the ultimate phase. Comparisons show acceptable differences mainly due to the sensitivity of the GFRP moduli as well as the non-linearity of concrete elements.Keywords: analytical model, concrete, flexural behavior, GFRP pultruded profile, hybrid structure, interconnection slip, push-out
Procedia PDF Downloads 2305025 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia PDF Downloads 2075024 Communicative Values of Yoruba Traditional Music on Adulthood Socialisation between the Late 20th and Early 21st Centuries
Authors: Odukunle Adebayo Atewolara-Odule
Abstract:
Music is an electronic medium and an integral content of the broadcast media, which has communicative values even in the process of entertaining listeners. The communicative values of music could have implications on what adults learn about culture and society. This study aimed at examining the communicative values of Yoruba traditional music and adulthood socialisation by comparing the situation of the late 20th with early 21st centuries. From the population of literate adults of between the ages of 30 years and 65 years in Ijebu North Local Government area of Ogun state, a sample of 200 respondents was drawn into the study through the stratified technique. A descriptive survey was conducted on the sample with the use of a structured questionnaire as the research instrument. Findings showed a significant relationship between what adults learned about the society and its culture from this category of music (p=0.000<0.05) but there was a higher significant relationship between Yoruba traditional music and adulthood socialisation in the late 20th than in early 21st centuries. Results also showed a significant communicative influence of Yoruba traditional music of the late 20th and early 21st centuries on adulthood socialisation (p=0.000<0.05). Respondents’ demographic characteristics were observed to play significant intervening roles on the communicative influence of Yoruba traditional music on socialisation among the adults between the late 20th and early 21st centuries (p=0.000<0.05). The study recommends that stakeholders should take cognisance of the lyrical contents of Yoruba traditional music due to its implications to inculcate values into people and shape their behaviour.Keywords: adulthood socialisation, communicative values, traditional music, Voruba
Procedia PDF Downloads 1825023 Effects of Carbon Black/Graphite Ratio for Electrical Conduction and Frictional Resistance of Nanocomposite Sol-Gel Coatings
Authors: Julien Acquadro, Sophie Noel, Frédéric Houze, Philippe Teste, Pascal Chretien, Clément Genet, Edouard Breniaux, Marie-Joël Menu, Florence Ansart, Marie Gressier
Abstract:
This paper presents the study results of the electrical and tribological properties of nanocomposite hybrid sol-gel coatings developed for industrial applications on electrical connector housings. The electrical properties of coatings are provided by conductive fillers. The coatings presented in this study are formulated with different types of conductive carbon fillers, in this case carbon black and graphite particles. The coatings are deposited on a high-phosphorous nickel substrate by a dip-coating process. The authors have investigated the effects of the carbon black/graphite ratio on the coating's electrical and tribological properties. Electrical characterizations with a 4-probe method and AFM measurements as well as tribological tests by micro-friction shed light on the role of the black carbon/graphite ratio on the final properties of the sol-gel nanocomposite coatings. This study shows that the amount of carbon black mainly drives the coatings' electrical conduction property, while graphite's lubrication properties bring interest to reduce the values of friction coefficients (at a contact pressure of 800 MPa). In the industrial field of electrical connectors, such coatings aim at replacing cadmium and chromium (VI) protection, as recommended by REACH (Registration, Evaluation and Authorization of Chemicals) and RoHS (Restriction of Hazardous Substances in electrical and electronic equipment) regulations (Annex XVII of REACH).Keywords: carbon conductive fillers, electrical conduction, sol-gel coatings, tribology
Procedia PDF Downloads 925022 Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique
Authors: Yunhui Chen, Damon Kent, Matthew Dargusch
Abstract:
Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications.Keywords: scaffolds, MG-63 cell culture, titanium, space holder
Procedia PDF Downloads 2365021 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen
Abstract:
After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity
Procedia PDF Downloads 1175020 Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy
Authors: H. Abdolvand, M. Riazat, H. Sohrabi, G. Faraji
Abstract:
An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV.Keywords: tube backward extrusion, AZ31, grain size distribution, grain refinement
Procedia PDF Downloads 5005019 Biaxial Fatigue Specimen Design and Testing Rig Development
Authors: Ahmed H. Elkholy
Abstract:
An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.Keywords: biaxial, fatigue, stress, testing
Procedia PDF Downloads 1305018 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 4145017 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model
Procedia PDF Downloads 1975016 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering
Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris
Abstract:
Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibilityKeywords: biomaterials, nanocomposites, scaffolds, tissue engineering
Procedia PDF Downloads 3195015 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury
Authors: Raja Ezman Raja Shariff
Abstract:
Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.Keywords: AKI, ARF, kidney, renal
Procedia PDF Downloads 4015014 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems
Procedia PDF Downloads 1765013 Health Communication: A Southwest Georgia Health Literacy Project
Authors: Marsha R. Lawrence
Abstract:
Introduction: In February and March of 2020, many Black Americans in Albany, Georgia, were impacted by COVID-19 compared to the rest of the country. Due to misinformation and distrust in the community, citizens were not able to make good health decisions regarding COVID-19. The city of Albany applied for a grant with the Department of Health and Human Services, specifically the Office of Minority Health and it was approved. The city of Albany partnered with Albany State University to administer the grant and implementation ensued. Method: An eleven-page electronic and paper cross-sectional survey was given to participants. Albany State University recruited community partners like health care organizations and faith-based organizations to reach the citizens of Albany, Georgia. These partners reached participants through creative community activities to educate participants about COVID-19 and provide incentives to receive a vaccine. Data collection is still in progress because activities are ongoing. Anticipated Results: By December 2023, we anticipate results of the number of participants who accepted vaccines based on participants who stated providers checked their understanding, participants who were satisfied with communication regarding COVID-19 health information about the vaccine, and participants who were involved in decisions regarding the COVID-19 vaccine. Conclusion: Health communication is a subsection of health literacy. At this point, approximately 4000 individuals have received information and education about COVID-19 in the Albany area. We expect building trusting relationships played an important part in the increase in knowledge and vaccination in Albany, Georgia.Keywords: health literacy, health communication, vaccination, COVID-19
Procedia PDF Downloads 875012 Thermal Contact Resistance of Nanoscale Rough Surfaces
Authors: Ravi Prasher
Abstract:
In nanostructured material thermal transport is dominated by contact resistance. Theoretical models describing thermal transport at interfaces assume perfectly flat surface whereas in reality surfaces can be rough with roughness ranging from sub-nanoscale dimension to micron scale. Here we introduce a model which includes both nanoscale contact mechanics and nanoscale heat transfer for rough nanoscale surfaces. This comprehensive model accounts for the effect of phonon acoustic mismatch, mechanical properties, chemical properties and randomness of the rough surface.Keywords: adhesion and contact resistance, Kaptiza resistance of rough surfaces, nanoscale thermal transport
Procedia PDF Downloads 3725011 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties
Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy
Abstract:
Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids
Procedia PDF Downloads 775010 Production of Bio-Composites from Cocoa Pod Husk for Use in Packaging Materials
Authors: L. Kanoksak, N. Sukanya, L. Napatsorn, T. Siriporn
Abstract:
A growing population and demand for packaging are driving up the usage of natural resources as raw materials in the pulp and paper industry. Long-term effects of environmental is disrupting people's way of life all across the planet. Finding pulp sources to replace wood pulp is therefore necessary. To produce wood pulp, various other potential plants or plant parts can be employed as substitute raw materials. For example, pulp and paper were made from agricultural residue that mainly included pulp can be used in place of wood. In this study, cocoa pod husks were an agricultural residue of the cocoa and chocolate industries. To develop composite materials to replace wood pulp in packaging materials. The paper was coated with polybutylene adipate-co-terephthalate (PBAT). By selecting and cleaning fresh cocoa pod husks, the size was reduced. And the cocoa pod husks were dried. The morphology and elemental composition of cocoa pod husks were studied. To evaluate the mechanical and physical properties, dried cocoa husks were extracted using the soda-pulping process. After selecting the best formulations, paper with a PBAT bioplastic coating was produced on a paper-forming machine Physical and mechanical properties were studied. By using the Field Emission Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (FESEM/EDS) technique, the structure of dried cocoa pod husks showed the main components of cocoa pod husks. The appearance of porous has not been found. The fibers were firmly bound for use as a raw material for pulp manufacturing. Dry cocoa pod husks contain the major elements carbon (C) and oxygen (O). Magnesium (Mg), potassium (K), and calcium (Ca) were minor elements that were found in very small levels. After that cocoa pod husks were removed from the soda-pulping process. It found that the SAQ5 formula produced pulp yield, moisture content, and water drainage. To achieve the basis weight by TAPPI T205 sp-02 standard, cocoa pod husk pulp and modified starch were mixed. The paper was coated with bioplastic PBAT. It was produced using bioplastic resin from the blown film extrusion technique. It showed the contact angle, dispersion component and polar component. It is an effective hydrophobic material for rigid packaging applications.Keywords: cocoa pod husks, agricultural residue, composite material, rigid packaging
Procedia PDF Downloads 785009 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components
Authors: Parastou Kharazmi
Abstract:
Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.Keywords: composite, material, rehabilitation, structure
Procedia PDF Downloads 2375008 Korean Smart Cities: Strategic Foci, Characteristics and Effects
Authors: Sang Ho Lee, Yountaik Leem
Abstract:
This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city
Procedia PDF Downloads 3695007 Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity
Authors: Riya Thomas, Denis Music, Tautgirdas Ruzgas
Abstract:
The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science.Keywords: density functional theory, electrochemical sensor, Ti-O film, tyrosinase
Procedia PDF Downloads 255006 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete
Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna
Abstract:
In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.Keywords: behavior, compacting, manual, SEC, semi-automatic
Procedia PDF Downloads 3615005 Preclinical Evidence of Pharmacological Effect from Medicinal Hemp
Authors: Muhammad nor Farhan Sa'At, Xin Y. Lim, Terence Y. C. Tan, Siti Hajar M. Rosli, Syazwani S. Ali, Ami F. Syed Mohamed
Abstract:
INTRODUCTION: Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, differs from marijuana by containing lower levels of delta-9-tetrahydronannabidiol- the principal psychoactive constituent in cannabis. Due to its non-psychoactive nature, there has been growing interest in hemp’s therapeutic potential, which has been investigated through pre-clinical and clinical study modalities. OBJECTIVE: To provide an overview of the current landscape of hemp research, through recent scientific findings specific to the pharmacological effects of the medicinal hemp plant and its derived compounds. METHODS: This review was conducted through a systematic search strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov. RESULTS: From 65 primary articles reviewed, there were 47 pre-clinical studies related to medicinal hemp. Interestingly, the hemp derivatives showed several potential activities such as anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro. CONCLUSION: Medicinal hemp possesses various pharmacological effects tested in vitro and in vivo. Information provided in this review could be used as tool to strengthen the study design of future clinical trial research.Keywords: Preclinical, Herbal Medicine, Hemp, Cannabis
Procedia PDF Downloads 1385004 Bring Your Own Device Security Model in a Financial Institution of South Africa
Authors: Michael Nthabiseng Moeti, Makhulu Relebogile Langa, Joey Jansen van Vuuren
Abstract:
This paper examines the utilization of personal electronic devices like laptops, tablets, and smartphones for professional duties within a financial organization. This phenomenon is known as bring your own device (BYOD). BYOD accords employees the freedom to use their personal devices to access corporate resources from anywhere in the world with Internet access. BYOD arrangements introduce significant security risks for both organizations and users. These setups change the threat landscape for enterprises and demand unique security strategies, as conventional tools tailored for safeguarding managed devices fall short in adequately protecting enterprise assets without active user cooperation. This paper applies protection motivation theory (PMT) to highlight behavioral risks from BYOD users that may impact the security of financial institutions. Thematic analysis was applied to gain a comprehensive understanding of how users perceive this phenomenon. These findings demonstrates that the existence of a security policy does not ensure that all employees will take measures to protect their personal devices. Active promotion of BYOD security policies is crucial for financial institution employees and management. This paper developed a BYOD security model which is useful for understanding compliant behaviors. Given that BYOD security is becoming a major concern across financial sector, it is important. The paper recommends that future research could expand the number of universities from which data is collected.Keywords: BYOD, information security, protection motivation theory, security risks, thematic analysis
Procedia PDF Downloads 345003 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance
Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran
Abstract:
Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering
Procedia PDF Downloads 3195002 Synthesis and Characterization of Some Novel Carbazole Schiff Bases (OLED)
Authors: Baki Cicek, Umit Calisir
Abstract:
Carbazoles have been replaced lots of studies from 1960's to present and also still continues. In 1987, the first diode device had been developed. Thanks to that study, light emitting devices have been investigated and developed and also have been used on commercial applications. Nowadays, OLED (Organic Light Emitting Diodes) technology is using on lots of electronic screen such as (mobile phone, computer monitors, televisions, etc.) Carbazoles were subject a lot of study as a semiconductor material. Although this technology is used commen and widely, it is still development stage. Metal complexes of these compounds are using at pigment dyes because of colored substances, polymer technology, medicine industry, agriculture area, preparing rocket fuel-oil, determine some of biological events, etc. Becides all of these to preparing of schiff base synthesis is going on intensely. In this study, some of novel carbazole schiff bases were synthesized starting from carbazole. For that purpose, firstly, carbazole was alkylated. After purification of N-substituted-carbazole was nitrated to sythesized 3-nitro-N-substituted and 3,6-dinitro-N-substituted carbazoles. At next step, nitro group/groups were reduced to amines. Purified with using a type of silica gel-column chromatography. At the last step of our study, with sythesized 3,6-diamino-N-substituted carbazoles and 3-amino-N-substituted carbazoles were reacted with aldehydes to condensation reactions. 3-(imino-p-hydroxybenzyl)-N-isobutyl -carbazole, 3-(imino-2,3,4-trimethoxybenzene)-N-butylcarbazole, 3-(imino-3,4-dihydroxybenzene)-N-octylcarbazole, 3-(imino-2,3-dihydroxybenzene)-N-octylkarbazole and 3,6-di(α-imino-β-naphthol) -N-hexylcarbazole compounds were synthesized. All of synthesized compounds were characterized with FT-IR, 1H-NMR, 13C-NMR, and LC-MS.Keywords: carbazole, carbazol schiff base, condensation reactions, OLED
Procedia PDF Downloads 4435001 Design of an Electric Arc Furnace for the Production of Metallurgical Grade Silicon
Authors: M. Barbouche, M. Hajji, H. Ezzaouia
Abstract:
This project is a step to manufacture solar grade silicon. It consists in designing an electrical arc furnace in order to produce metallurgical silicon Mg-Si with mutually carbon and high purity of silica. It concerns, first, the development of a functional analysis, a mechanical design and thermodynamic study. Our study covers also, the design of the temperature control system and the design of the electric diagrams. The furnace works correctly. A Labview interface was developed to control all parameters and to supervise the operation of furnace. Characterization tests with X-ray technique and Raman spectroscopy allow us to confirm the metallurgical silicon production.Keywords: arc furnace, electrical design, silicon manufacturing, regulation, x-ray characterization
Procedia PDF Downloads 4975000 Texture Observation of Bending by XRD and EBSD Method
Authors: Takashi Sakai, Yuri Shimomura
Abstract:
The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function
Procedia PDF Downloads 3304999 Elastomer Composites Containing Ionic Liquids
Authors: M. Maciejewska, F. Walkiewicz
Abstract:
The aim of this work was to study the activity of several novel benzalkonium and alkylammonium and alkylimidazolium ionic liquids with 2-mercaptobenzothiazolate for use as accelerators in the sulphur vulcanisation of butadiene-styrene elastomer (SBR). The application of novel ionic liquids allowed for the elimination of N-cyclohexyl-2-benzothiazolesulfenamide from SBR compounds and for the considerable reduction of the amount of 2-mercaptobenzothiazole present in rubber products, which is favourable because, it is an allergenic agent. Synthesised salts could be used alternatively to standard accelerators in the vulcanisation of SBR, without any detrimental effects on the vulcanisation process, the physical properties or the thermal stability of the obtained vulcanisates. Ionic liquids increased the crosslink density of the vulcanisates and improved their thermal stability.Keywords: ionic liquids, mechanical properties, styrene-butadiene rubber, vulcanisation
Procedia PDF Downloads 3134998 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment
Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki
Abstract:
The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.Keywords: COVID-19, PPE, mask, filtration, efficiency
Procedia PDF Downloads 1704997 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition
Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma
Abstract:
It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth
Procedia PDF Downloads 350