Search results for: green fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3579

Search results for: green fuel

669 Designing Urban Spaces Differently: A Case Study of the Hercity Herstreets Public Space Improvement Initiative in Nairobi, Kenya

Authors: Rehema Kabare

Abstract:

As urban development initiatives continue to emerge and are implemented amid rapid urbanization and climate change effects in the global south, the plight of women is only being noticed. The pandemic exposed the atrocities, violence and unsafety women and girls face daily both in their homes and in public urban spaces. This is a result of poorly implemented and managed urban structures, which women have been left out of during design and implementation for centuries. The UN Habitat’s HerCity toolkit provides a unique opportunity to change course for both governments and civil society actors where women and girls are onboarded onto urban development initiatives, with their designs and ideas being the focal point. This toolkit proves that when women and girls design, they design for everyone. The HerCity HerStreets, Public Space Improvement Initiative, resulted in a design that focused on two aspects: Streets are a shared resource, and Streets are public spaces. These two concepts illustrate that for streets to be experienced effectively as cultural spaces, they need to be user-friendly, safe and inclusive. This report demonstrates how the HerCity HerStreets as a pilot project can be a benchmark for designing urban spaces in African cities. The project focused on five dimensions to improve the air quality of the space, the space allocation to street vending and bodaboda (passenger motorcycle) stops parking and the green coverage. The process displays how digital tools such as Minecraft and Kobo Toolbox can be utilized to improve citizens’ participation in the development of public spaces, with a special focus on including vulnerable groups such as women, girls and youth.

Keywords: urban space, sustainable development, gender and the city, digital tools and urban development

Procedia PDF Downloads 68
668 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil

Procedia PDF Downloads 280
667 Characterization, Antibacterial and Cytotoxicity Evaluation of Silver Nanoparticles Synthesised Using Grewia lasiocarpa E. Mey. Ex Harv. Plant Extracts

Authors: Nneka Augustina Akwu, Yougasphree Naidoo

Abstract:

Molecular advancement in technology has created a means whereby the atoms and molecules (solid forms) of certain materials such as plants, can now be reduced to a range of 1-100 nanometres. Green synthesis of silver nanoparticles (AgNPs) was carried out at room temperature (RT) 25 ± 2°C and 80°C, using the metabolites in the aqueous extracts of the leaves and stem bark of Grewia lasiocarpa as reductants and stabilizing agents. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry, attenuated total reflectance - Fourier transforms infrared (ATR-FTIR) spectroscopy, nanoparticle tracking analysis (NTA), Energy Dispersive X-ray fluorescence scanning electron microscope (SEM-EDXRF) and high-resolution transmission electron microscopy (HRTEM). The AgNPs were biologically evaluated for antioxidant, antibacterial and cytotoxicity activities. The phytochemical and FTIR analyses revealed the presence of metabolites that act as reducing and capping agents, while the UV-Vis spectroscopy of the biosynthesized NPs showed absorption between 380-460 nm, confirming AgNP synthesis. The Zeta potential values were between -9.1 and -20.6 mV with a hydrodynamics diameter ranging from 38.3 to 46.7 nm. SEM and HRTEM analyses revealed that AgNPs were predominately spherical with an average particle size of 2- 31 nm for the leaves and 5-27 nm for the stem bark. The cytotoxicity IC50 values of the AgNPs against HeLa, Caco-2 and MCF-7 were >1 mg/mL. The AgNPs were sensitive to all strains of bacteria used, with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) being more sensitive to the AgNPs. Our findings propose that antibacterial and anticancer agents could be derived from these AgNPs of G. lasiocarpa, and warrant their further investigation.

Keywords: antioxidant, cytotoxicity, Grewia lasiocarpa, silver nanoparticles, Zeta potentials

Procedia PDF Downloads 129
666 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 127
665 Redox-Mediated Supramolecular Radical Gel

Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay

Abstract:

In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.

Keywords: Ionic-gel, redox-cycle, self-assembly, useful product

Procedia PDF Downloads 74
664 Metallograpy of Remelted A356 Aluminium following Squeeze Casting

Authors: Azad Hussain, Andrew Cobley

Abstract:

The demand for lightweight parts with high mechanical strength(s) and integrity, in sectors such as the aerospace and automotive is ever increasing, motivated by the need for weight reduction in order to increase fuel efficiency with components usually manufactured using a high grade primary metal or alloy. For components manufactured using the squeeze casting process, this alloy is usually A356 aluminium (Al), it is one of the most versatile Al alloys; and is used extensively in castings for demanding environments. The A356 castings provide good strength to weight ratio making it an attractive option for components where strength has to be maintained, with the added advantage of weight reduction. In addition, the versatility in castabilitiy, weldability and corrosion resistance are other attributes that provide for the A356 cast alloy to be used in a large array of industrial applications. Conversely, it is rare to use remelted Al in these cases, due the nature of the applications of components in demanding environments, were material properties must be defined to meet certain specifications for example a known strength or ductility. However the use of remelted Al, especially primary grade Al such as A356, would offer significant cost and energy savings for manufacturers using primary alloys, provided that remelted aluminium can offer similar benefits in terms of material microstructure and mechanical properties. This study presents the results of the material microstructure and properties of 100% primary A356 Al and 100% remelt Al cast, manufactured via the direct squeeze cast method. The microstructures of the castings made from remelted A356 Al were then compared with the microstructures of primary A356 Al. The outcome of using remelting Al on the microstructure was examined via different analytical techniques, optical microscopy of polished and etched surfaces, and scanning electron microscopy. Microstructural analysis of the 100% remelted Al when compared with primary Al show similar α-Al phase, primary Al dendrites, particles and eutectic constituents. Mechanical testing of cast samples will elucidate further information as to the suitability of utilising 100% remelt for casting.

Keywords: A356, microstructure, remelt, squeeze casting

Procedia PDF Downloads 202
663 Hybrid Renewable Power Systems

Authors: Salman Al-Alyani

Abstract:

In line with the Kingdom’s Vision 2030, the Saudi Green initiative was announced aimed at reducing carbon emissions by more than 4% of the global contribution. The initiative included plans to generate 50% of its energy from renewables by 2030. The geographical location of Saudi Arabia makes it among the best countries in terms of solar irradiation and has good wind resources in many areas across the Kingdom. Saudi Arabia is a wide country and has many remote locations where it is not economically feasible to connect those loads to the national grid. With the improvement of battery innovation and reduction in cost, different renewable technologies (primarily wind and solar) can be integrated to meet the need for energy in a more effective and cost-effective way. Saudi Arabia is famous for high solar irradiations in which solar power generation can extend up to six (6) hours per day (25% capacity factor) in some locations. However, the net present value (NPV) falls down to negative in some locations due to distance and high installation costs. Wind generation in Saudi Arabia is a promising technology. Hybrid renewable generation will increase the net present value and lower the payback time due to additional energy generated by wind. The infrastructure of the power system can be capitalized to contain solar generation and wind generation feeding the inverter, controller, and load. Storage systems can be added to support the hours that have an absence of wind or solar energy. Also, the smart controller that can help integrate various renewable technologies primarily wind and solar, to meet demand considering load characteristics. It could be scalable for grid or off-grid applications. The objective of this paper is to study the feasibility of introducing a hybrid renewable system in remote locations and the concept for the development of a smart controller.

Keywords: battery storage systems, hybrid power generation, solar energy, wind energy

Procedia PDF Downloads 173
662 Comparative Study of the Quality of Treated Water and Sludge from Wastewater Treatment Plants in the Peri-Urban Area of Casablanca

Authors: Meryem Zarri, Mohame Tahiri, Fouad Amraoui

Abstract:

In the context of water resources shortage that Morocco is experiencing in recent years, the mobilization of non-conventional resources becomes a necessity. The reuse of treated water and the bioconversion of biological sewage sludge into value-added products is considered an environmentally friendly and economical approach to the management of this significant resource which represent at least 80 % of consumed fresh wate In this work, we compare the quality of treated water and sewage sludge from wastewater treatment plants in the peri-urban Casablanca by analyzing different physicochemical and bacteriological parameters. The choice was made for three wastewater plants installed in different regions and monitored either by LYDEC and Commune of Had Soualem and use different technologies. Recycling of treated water in agriculture and watering of green spaces is dependent on the compliance of the parameters with international standards (WHO, FAO, …etc.) The preliminary tests of the samples taken during the second half of the year 2021 showed that the advanced technologies put in place at the level of the Mediouna and the airport zone stations (membrane reactor and activated sludge, respectively) give water to the output of the stations more respectful of the standards required in terms of physicochemical parameters (pH, Conductivity, Tubidity, COD, BOD5, TNK, and TPK) and bacteriological (fecal germs, Escherichia Coli, streptococci, Helminthes eggs). The parameters relating to the Had Soualem natural lagoon station are generally at the tolerance’s threshold. The results of analyzes relating to the residual sludge collected at the end of the cycle are, on the whole satisfactory despite a fluctuating variability of the bacteriological parameters.

Keywords: urban wastewater treatment plants, purified wastewater, sewage sludge, physicochemical parameters, bacteriological parameters, peri-urban area of ​​casablanca, morocco

Procedia PDF Downloads 141
661 Social Aspect of Energy Transition in Frankfurt

Authors: Aly Ahmed, Aber Kay Obwona, Mokrzecka Martyna, Piotrowska Małgorzata, Richardson Stephen

Abstract:

Frankfurt am Main, the fifth largest city in Germany, ranked at 15th place by the Global Financial Centers Index in 2014, and a finalist of European Green Capital, 214 is a crucial player in German Environmental Policy. Since 2012 the city Authorities have been working on implementing the plan, which assumed to reduce the energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. A significant question when facing the starting of Master Plan public’s introduction was deciding which method should be used to increase the public engagement. In order to answer this question, the city and region authorities in the cooperation with Frankfurt’s Universities and Climate KIC, organized a two-week PhD scientific workshops, in which participated more than 30 students from numerous countries. The paper presented the outcome of the research and solution proposal of the winning team. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, using of new technologies and system to the public is not sufficient. Transition –by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Authors believe that only by close cooperation with city dwellers, as well as different stakeholders, the Transition in Frankfurt can be successful. The vital part is the strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society. Author proposal based therefore, on fostering the citizens engagement through a comprehensive, innovative communication strategy.

Keywords: city development, communication strategies, social transition, sustainability

Procedia PDF Downloads 297
660 Priority Sites for Deforested and Degraded Mountain Restoration Projects in North Korea

Authors: Koo Ja-Choon, Seok Hyun-Deok, Park So-Hee

Abstract:

Even though developed countries have supported aid projects for restoring degraded and deforested mountain, recent North Korean authorities announced that North Korean forest is still very serious. Last 12 years, more than 16 thousand ha of forest were destroyed. Most of previous researches concluded that food and fuel problems should be solved for preventing people from deforesting and degrading forest in North Korea. It means that mountain restoration projects such as A/R(afforestation/reforestation) and REDD(Reducing Emissions from Deforestation and Forest Degradation) project should be implemented with the agroforestry and the forest tending project. Because agroforestry and the forest tending can provide people in the project area with foods and fuels, respectively. Especially, Agroforestry has been operated well with the support of Swiss agency of Development and cooperation since 2003. This paper aims to find the priority sites for mountain restoration project where all types of projects including agroforesty can be implemented simultaneously. We tried to find the primary counties where the areas of these activities were distributed widely and evenly. Recent spatial data of 186 counties representing altitude, gradient and crown density were collected from World Forest Watch. These 3 attributes were used to determine the type of activities; A/R, REDD, Agroforestry and forest tending project. Finally, we calculated the size of 4 activities in 186 counties by using GIS technique. Result shows that Chongjin in Hamgyeongbuk-do, Hoeryong in Hamgyeongbuk-do and Tongchang in Pyeonganbuk-do are on the highest priority of counties. Most of feasible counties whose value of richness and uniformity were greater than the average were located near the eastern coast of North Korea. South Korean government has not supported any aid projects in North Korea since 2010. Recently, South Korea is trying to continue the aid projects for North Korea. Forest project which is not affected by the political situation between North- and South- Korea can be considered as a priority activities. This result can be used when South Korean government determine the priority sites for North Korean mountain restoration project in near future.

Keywords: agroforestry, forest restoration project, GIS, North Korea, priority

Procedia PDF Downloads 312
659 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 258
658 Sustainable Project Management: Driving the Construction Industry Towards Sustainable Developmental Goals

Authors: Francis Kwesi Bondinuba, Seidu Abdullah, Mewomo Cecilia, Opoku Alex

Abstract:

Purpose: The purpose of this research is to develop a framework for understanding how sustainable project management contributes to the construction industry's pursuit of sustainable development goals. Study design/methodology/approach: The study employed a theoretical methodology to review existing theories and models that support Sustainable Project Management (SPM) in the construction industry. Additionally, a comprehensive review of current literature on SPM is conducted to provide a thorough understanding of this study. Findings: Sustainable Project Management (SPM) practices, including stakeholder engagement and collaboration, resource efficiency, waste management, risk management, and resilience, play a crucial role in achieving the Sustainable Development Goals (SDGs) within the construction industry. Conclusion: Adopting Sustainable Project Management (SPM) practices in the Ghanaian construction industry enhances social inclusivity by engaging communities and creating job opportunities. The adoption of these practices faces significant challenges, including a lack of awareness and understanding, insufficient regulatory frameworks, financial constraints, and a shortage of skilled professionals. Recommendation: There should be a comprehensive approach to project planning and execution that includes stakeholders such as local communities, government bodies, and environmental organisations, the use of green building materials and technologies, and the implementation of effective waste management strategies, all of which will ensure the achievement of SDGs in Ghana's construction industry. Originality/value: This paper adds to the current literature by offering the various theories and models in Sustainable Project Management (SPM) and a detailed review of how Sustainable Project Management (SPM) contribute to the achievement of the Sustainable Development Goals (SDGs) in the Ghanaian Construction Industry.

Keywords: sustainable development, sustainable development goals, construction industry, ghana, sustainable project management

Procedia PDF Downloads 12
657 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 245
656 National Plans for Recovery and Resilience between National Recovery and EU Cohesion Objectives: Insights from European Countries

Authors: Arbolino Roberta, Boffardi Raffaele

Abstract:

Achieving the highest effectiveness for the National Plans for Recovery and Resilience (NPRR) while strengthening the objectives of cohesion and reduction of intra-EU unbalances is only possible by means of strategic, coordinated, and coherent policy planning. Therefore, the present research aims at assessing and quantifying the potential impact of NPRRs across the twenty-seven European Member States in terms of economic convergence, considering disaggregated data on industrial, construction, and service sectors. The first step of the research involves a performance analysis of the main macroeconomic indicators describing the trends of twenty-seven EU economies before the pandemic outbreak. Subsequently, in order to define the potential effect of the resources allocated, we perform an impact analysis of previous similar EU investment policies, estimating national-level sectoral elasticity associated with the expenditure of the 2007-2013 and 2014-2020 Cohesion programmes funds. These coefficients are then exploited to construct adjustment scenarios. Finally, convergence analysis is performed on the data used for constructing scenarios in order to understand whether the expenditure of funds might be useful to foster economic convergence besides driving recovery. The results of our analysis show that the allocation of resources largely mirrors the aims of the policy framework underlying the NPRR, thus reporting the largest investments in both those sectors most affected by the economic shock (services) and those considered fundamental for the digital and green transition. Notwithstanding an overall positive effect, large differences exist among European countries, while no convergence process seems to be activated or fostered by these interventions.

Keywords: NPRR, policy evaluation, cohesion policy, scenario Nalsysi

Procedia PDF Downloads 73
655 Seismicity and Ground Response Analysis for MP Tourism Office in Indore, India

Authors: Deepshikha Shukla, C. H. Solanki, Mayank Desai

Abstract:

In the last few years, it has been observed that earthquake is proving a threat to the scientist across the world. With a large number of earthquakes occurring in day to day life, the threat to life and property has increased manifolds which call for an urgent attention of all the researchers globally to carry out the research in the field of Earthquake Engineering. Any hazard related to the earthquake and seismicity is considered to be seismic hazards. The common forms of seismic hazards are Ground Shaking, Structure Damage, Structural Hazards, Liquefaction, Landslides, Tsunami to name a few. Among all the natural hazards, the most devastating and damaging is the earthquake as all other hazards are triggered only after the occurrence of an earthquake. In order to quantify and estimate the seismicity and seismic hazards, many methods and approaches have been proposed in the past few years. Such approaches are Mathematical, Conventional and Computational. Convex Set Theory, Empirical Green’s Function are some of the Mathematical Approaches whereas the Deterministic and Probabilistic Approaches are the Conventional Approach for the estimation of the seismic Hazards. Ground response and Ground Shaking of a particular area or region plays an important role in the damage caused due to the earthquake. In this paper, seismic study using Deterministic Approach and 1 D Ground Response Analysis has been carried out for Madhya Pradesh Tourism Office in Indore Region in Madhya Pradesh in Central India. Indore lies in the seismic zone III (IS: 1893, 2002) in the Seismic Zoning map of India. There are various faults and lineament in this area and Narmada Some Fault and Gavilgadh fault are the active sources of earthquake in the study area. Deepsoil v6.1.7 has been used to perform the 1 D Linear Ground Response Analysis for the study area. The Peak Ground Acceleration (PGA) of the city ranges from 0.1g to 0.56g.

Keywords: seismicity, seismic hazards, deterministic, probabilistic methods, ground response analysis

Procedia PDF Downloads 155
654 Evaluation of Cultural Landscape Perception in Waterfront Historic Districts Based on Multi-source Data - Taking Venice and Suzhou as Examples

Authors: Shuyu Zhang

Abstract:

The waterfront historical district, as a type of historical districts on the verge of waters such as the sea, lake, and river, have a relatively special urban form. In the past preservation and renewal of traditional historic districts, there have been many discussions on the land range, and the waterfront and marginal spaces are easily overlooked. However, the waterfront space of the historic districts, as a cultural landscape heritage combining historical buildings and landscape elements, has strong ecological and sustainable values. At the same time, Suzhou and Venice, as sister water cities in history, have more waterfront spaces that can be compared in urban form and other levels. Therefore, this paper focuses on the waterfront historic districts in Venice and Suzhou, establishes quantitative evaluation indicators for environmental perception, makes analogies, and promotes the renewal and activation of the entire historical district by improving the spatial quality and vitality of the waterfront area. First, this paper uses multi-source data for analysis, such as Baidu Maps and Google Maps API to crawl the street view of the waterfront historic districts, uses machine learning algorithms to analyze the proportion of cultural landscape elements such as green viewing rate in the street view pictures, and uses space syntax software to make quantitative selectivity analysis, so as to establish environmental perception evaluation indicators for the waterfront historic districts. Finally, by comparing and summarizing the waterfront historic districts in Venice and Suzhou, it reveals their similarities and differences, characteristics and conclusions, and hopes to provide a reference for the heritage preservation and renewal of other waterfront historic districts.

Keywords: waterfront historical district, cultural landscape, perception, multi-source Data

Procedia PDF Downloads 185
653 Milk Yield and Fingerprinting of Beta-Casein Precursor (CSN2) Gene in Some Saudi Camel Breeds

Authors: Amr A. El Hanafy, Yasser M. Saad, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan

Abstract:

Camels are substantial providers of transport, milk, sport, meat, shelter, fuel, security and capital in many countries, particularly Saudi Arabia. Identification of animal breeds has progressed rapidly during the last decade. Advanced molecular techniques are playing a significant role in breeding or strain protection laws. On the other hand, fingerprinting of some molecular markers related to some productive traits in farm animals represents most important studies to our knowledge, which aim to conserve these local genetic resources, and to the genetic improvement of such local breeds by selective programs depending on gene markers. Milk records were taken two days in each week from female camels of Majahem, Safara, Wathaha, and Hamara breeds, respectively from different private farms in northern Jeddah, Riyadh and Alwagh governorates and average weekly yields were calculated. DNA sequencing for CSN2 gene was used for evaluating the genetic variations and calculating the genetic distance values among four Saudi camel populations which are Hamra(R), Safra(Y), Wadha(W) and Majaheim(M). In addition, this marker was analyzed for reconstructing the Neighbor joining tree among evaluating camel breeds. In respect to milk yield during winter season, result indicated that average weekly milk yield of Safara camel breed (30.05 Kg/week) is significantly (p < 0.05) lower than the other 3 breeds which ranged from 39.68 for Hamara to 42.42 Kg/week for Majahem, while there are not significant differences between these three breeds. The Neighbor Joining analysis that re-constructed based on DNA variations showed that samples are clustered into two unique clades. The first clade includes Y (from Y4 to Y18) and M (from M1, to M9). On the other hand, the second cluster is including all R (from R1 to R6) and W (from W1 to W6). The genetic distance values were equal 0.0068 (between the groups M&Y and R&W) and equal 0 (within each group).

Keywords: milk yield, beta-casein precursor (CSN2), Saudi camel, molecular markers

Procedia PDF Downloads 207
652 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 160
651 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 257
650 Adaptive Reuse of Lost Urban Space

Authors: Rana Sameeh

Abstract:

The city is the greatest symbol of human civilization and has been built for safety and comfort. However, uncontrolled urban growth caused some anonymous and unsightly images of the cities such as unused or abandoned spaces. When social interaction is missed in a public space it means the public space is lost since public spaces reflect the social life and interaction of people. Accordingly; this space became one of the most meaningless parts of the cities and has broken the continuity of the urban fabric. Lost urban spaces are the leftover unstructured landscape within the urban fabric. They are generally the unrecognized urban areas that are in need of redesign, since they have a great value that can add to their surrounding urban context. The research significance lies within the importance of urban open spaces, their value and their impact on the urban fabric. The research also addresses the reuse and reclamation of lost urban spaces in order to increase the percentage of green areas along the urban fabric, provide urban open spaces, develop a sustainable approach towards urban landscape and enhance the quality of the public open space and user experience. In addition, the reuse of lost space will give it the identity and function it lacks while also providing places for presence, spending time and observing. Creating continuity in a broken urban fabric represents an exploratory process in the relationship between infrastructure and the urban fabric and seeks to establish an architectural solution to leftover space within the city. In doing so, the research establishes a framework (criteria) for adaptive reuse of lost urban space throughout inductive and deductive methodology, analytical methodology; by analyzing some relevant examples and similar cases of lost spaces and finally through field methodology; by applying the achieved criteria on a case study in Alexandria and carrying on SWOT analysis and evaluation of the potentials of this case study.

Keywords: adaptive reuse, lost urban space, quality of public open space, urban fabric

Procedia PDF Downloads 629
649 Social Sustainability and Affordability of the Transitional Housing Scheme in Hong Kong

Authors: Tris Kee

Abstract:

This research investigates social sustainability factors in transitional housing projects and their impact on fostering healthy living environments that promote physical activity and social interaction for residents. Social sustainability is integral to individual health and well-being, as emphasized by Goal 11 of the 2030 Agenda for Sustainable Development, which highlights the importance of safe, affordable, and accessible transport systems, green spaces, and public spaces catering to vulnerable populations' needs. Communal spaces in urban environments are essential for fostering social sustainability, as they serve as settings for physical activities and social interactions among diverse socio-economic groups. Factors such as neighborhood social atmosphere, historical context, social disparity, and mobility can influence the relationship between existing and transitional communities. Mental health effects can be measured through housing segregation, mobility and accessibility, and housing tenure. A significant research gap exists in understanding the living environment of transitional housing in Hong Kong and the social sustainability factors affecting residents' mental and physical health. To address this gap, our study employs a mixed-methods approach combining survey questionnaires and interviews to gather both quantitative and qualitative data. This methodology will provide comprehensive insights into residents' experiences and perceptions. Our research's main contribution is identifying key social sustainability factors in transitional housing and their impact on residents' well-being, informing policy-making and the creation of inclusive, healthy living environments. By addressing this research gap, we aim to provide valuable insights for future housing projects, ultimately promoting the development of socially sustainable transitional communities.

Keywords: social sustainablity, affordable housing, transitional housing, high density housing

Procedia PDF Downloads 68
648 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 286
647 Development of Hybrid Materials Combining Biomass as Fique Fibers with Metal-Organic Frameworks, and Their Potential as Mercury Adsorbents

Authors: Karen G. Bastidas Gomez, Hugo R. Zea Ramirez, Manuel F. Ribeiro Pereira, Cesar A. Sierra Avila, Juan A. Clavijo Morales

Abstract:

The contamination of water sources with heavy metals such as mercury has been an environmental problem; it has generated a high impact on the environment and human health. In countries such as Colombia, mercury contamination due to mining has reached levels much higher than the world average. This work proposes the use of fique fibers as adsorbent in mercury removal. The evaluation of the material was carried out under five different conditions (raw, pretreated by organosolv, functionalized by TEMPO oxidation, fiber functionalized plus MOF-199 and fiber functionalized plus MOF-199-SH). All the materials were characterized using FTIR, SEM, EDX, XRD, and TGA. Regarding the mercury removal, it was done under room pressure and temperature, also pH = 7 for all materials presentations, followed by Atomic Absorption Spectroscopy. The high cellulose content in fique is the main particularity of this lignocellulosic biomass since the degree of oxidation depends on the number of hydroxyl groups on the surface capable of oxidizing into carboxylic acids, a functional group capable of increasing ion exchange with mercury in solution. It was also expected that the impregnation of the MOF would increase the mercury removal; however, it was found that the functionalized fique achieved a greater percentage of removal, resulting in 81.33% of removal, 44% for the fique with the MOF-199 and 72% for the MOF-199-SH with. The pretreated fiber and raw also showed 74% and 56%, respectively, which indicates that fique does not require considerable modifications in its structure to achieve good performances. Even so, the functionalized fiber increases the percentage of removal considerably compared to the pretreated fique, which suggests that the functionalization process is a feasible procedure to apply with the purpose of improving the removal percentage. In addition, this is a procedure that follows a green approach since the reagents involved have low environmental impact, and the contribution to the remediation of natural resources is high.

Keywords: biomass, nanotechnology, science materials, wastewater treatment

Procedia PDF Downloads 109
646 Vanadium (V) Complexes of a Tripodal Ligand, Their Characterization and Biological Implications

Authors: Mannar R. Maurya, Bhawna Uprety, Fernando Avecilla, Pedro Adão, J. Costa Pessoa

Abstract:

The reaction of the tripodal tetradentate dibasic ligand 6,6'–(2–(pyridin–2–yl)ethylazanediyl)bis(methylene)bis(2,4–di–tert–butylphenol), H2L1 I, with [VIVO(acac)2] in CH3CN gives the VVO–complex, [VVO(acac)(L1)] 1. Crystallization of 1 in CH3CN at ~0 ºC, gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{VVO(L1)}2µ–O] 3. Upon prolonged treatment of 1 in MeOH [VVO(OMe)(MeOH)(L1)] 2 is obtained. All three complexes are analyzed by single–crystal X–ray diffraction, depicting distorted octahedral geometry around vanadium. In the reaction of H2L1 with VIVOSO4 partial hydrolysis of the tripodal ligand results in elimination of the pyridyl fragment of L1 and the formation of H[VVO2(L2)] 4, containing the ONO tridentate ligand 6,6'–azanediylbis(methylene)bis(2,4–di–tert–butylphenol), H2L2 II. Compound 4, which was not fully characterized, undergoes dimerization in acetone yielding the hydroxido–bridged [{VVO(L2)}2µ–(HO)2] 5, having distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{VVO(L2)}2µ–O] 6 is obtained, with trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol–oxidase mimic in the oxidation of catechol to o–quinone under air. The process is confirmed to follow a Michaelis–Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66×10–6 M min -1 and 0.0557 M, respectively, and the turnover frequency is 0.0541 min–1. Complex 2 is also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of primary oxidizing agent, H2O2 the para mono–brominated product corresponds to ~93 % of the products and no dibromo derivative is formed.

Keywords: oxidovanadium (V) complexes, tripodal ligand, crystal structure, catechol oxidase mimetic activity

Procedia PDF Downloads 329
645 Natural Enemies of the Fall Armyworm (Spodoptera frugiperda, Smith) and Comparing Neem Aqueous Extracts against Its Larvae in Gurage Zone, Central Ethiopia

Authors: Abera Hailu Degaga, Emana Getu Degaga

Abstract:

Spodoptera frugiperda is an invasive insect pest that infests and feeds various crops, particularly affecting maize yields. However, nature has its own way of maintaining balance, and in this case, natural enemies play a crucial role in regulating the population of S. frugiperda. Locally available and easily prepared botanical sources, bio-pesticides, are also important. The objectives of the study were to investigate the natural enemies of S. frugiperda in the Gurage zone and to compare Neem aqueous extracts against its larvae in central Ethiopia. S. frugiperda larvae and egg masses were collected randomly from smallholder maize farms infested with pests between June and August 2023. Our findings revealed the existence of diverse types of parasitoids, predators, and entomopathogenic fungi associated with S. frugiperda. Notably, we documented three species of parasitoids, namely Exorista xanthaspis and Tachina spp. (Diptera: Tachinidae) and Charops annulipes (Hymenoptera: Ichneumonidae). All three species of parasitoids were recorded from Ethiopia for the first time. The overall parasitism rate was 5.3%, with individual rates ranging from 1.3 to 4%. Additionally, we identified ten species of predator insects from four different orders, including Hemiptera, Dermaptera, Coleoptera, and Mantodea, in the maize farms infested with S. frugiperda. Aqueous extract of Neem seed and leaf powder and green leaf exhibited similar mortality rates of S. frugiperda larvae at 72 hours even though there was a significant difference at 24 and 48 hours of the test. For effective management of S. frugiperda further research is necessary to fully exploit the potential of these natural enemies and additionally to use botanical source pesticides like Azadirachta indica.

Keywords: bio-pesticide, natural enemy, parasitoids, predators, Tachinid flies

Procedia PDF Downloads 59
644 Evaluation of Oligocene-Miocene Clay from the Northern Part of Palmyra Region (Syria) for Industrial Ceramic Applications

Authors: Abdul Salam Turkmani

Abstract:

Clay of the northern Palmyra region is one of the most important raw materials used in the Syrian ceramics industry. This study is focused on the evaluation of various laboratory analyses such as chemical analysis (XRF), mineral X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and semi-industrial tests carried out on samples collected on two representative locations of the upper Oligocene in AlMkamen valley (MK) and lower Miocene in AlZukara valley (ZR) of the northern part of Palmyra, Syria. Chemical results classify the (MK) and (ZR) clays as semi-plastic red clay slightly carbonate and (eliminate probable) illite-chlorite clays with a very fine particle size distribution. Content of SiO₂ between 46.28-57.66%, Al2O3 13.81-25.2%, Fe₂O₃ 3.47-11.58%, CaO 1.15-7.19%, Na₂O+K₂O varied between 3.34-3.71%. Based on clay chemical composition and iron and carbonate content, these deposits can be considered as red firing clays. Their mineralogical composition is mainly represented by illite, kaolinite and quartz, and accessories minerals such as calcite, feldspar, phillipsite, and goethite. The results of the DTA test confirm the presence of gypsum and quartz phases in (MK) clay. Ceramic testing shows good green and dry bending strength values, which varied between 9-14 kg/cm², at 1160°C to 1180°C. Water absorption moves from 14.6 % at 1120°C to 2.2% at 1180°C to 1.6% at 1200°C. Breaking load after firing changes from 400 to 590 kg/cm². At 1200°C (MK), clay reaches perfect vitrification. After firing, the color of the clay changes from orange-hazel to red-brown at 1180°C. Technological results confirmed the suitability of the studied clays to produce floor and wall ceramic tiles. Using one of the two types of clay into the ceramic body or both types together gave satisfactory industrial results.

Keywords: ceramic, clay, industry , Palmyra

Procedia PDF Downloads 188
643 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 137
642 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 123
641 Local Identities to Global in the Centre of Isan, Thailand: Promoting Local Development and Community Participation

Authors: Thammanoon Raveepong, Craig Wheway

Abstract:

Originating from a multifaceted research project beginning with the opening of the Green Market at Ban Laow sub-district, Kosum Phisai, Mahasarakham with the support of Kosum Phisai Governor. The project involves key stakeholders related to villagers who have become involved with linking local identity to a more global identity to help ameliorate falling agricultural incomes and casualised work. There have been fifteen formal meetings involving local government stakeholders that took place at the local university, local schools, a public meeting at Ban-Don-Toom and Village meeting shelters. These events hosted 176 local stakeholders consisting of the District Governor, 7 Chairpersons/Heads of the District Development Council, a Health Promotion group, District retired government staff, 4 sub-district local government members, the City Development Council, 2 representatives from Mahasarakham Provincial Culture Council, 4 principles of all local schools, 11 village heads, 15 scholars form local and national universities, 132 villagers and 4 staff from public relation units. The goal of the project was to initiate a variety of local projects including promotion of Local healthy food, farm/homestay accommodation, local uniqueness, Travel guides (in book form and guide youths) and the proposed development of community tourism with the aim to utilise local people and activities to tap into the growing alternative tourism market. This paper aims to document the progress thus far, and the challenges presented working with local communities that have lacked expertise in linking to the global economy to derive economic benefits for their communities.

Keywords: Community-based tourism, community participation, local identity, mahasarakham province

Procedia PDF Downloads 333
640 Effects of Rising Cost of Building Materials in Nigeria: A Case Study of Adamawa State

Authors: Ibrahim Yerima Gwalem, Jamila Ahmed Buhari

Abstract:

In recent years, there has been an alarming rate of increase in the costs of building materials in Nigeria, and this ugly phenomenon threatens the contributions of the construction industry in national development. The purpose of this study was to assess the effects of the rising cost of building materials in Adamawa State Nigeria. Four research questions in line with the purpose of the study were raised to guide the study. Two null hypotheses were formulated and tested at 0.05 level of significance. The study adopted a survey research design. The population of the study comprises registered contractors, registered builders, selected merchants, and consultants in Adamawa state. Data were collected using researcher designed instrument tagged effects of the rising cost of building materials questionnaire (ERCBMQ). The instrument was subjected to face and content validation by two experts, one from Modibbo Adama University of Technology Yola and the other from Federal Polytechnic Mubi. The reliability of the instrument was determined by the Cronbach Alpha method and yielded a reliability index of 0.85 high enough to ascertain the reliability. Data collected from a field survey of 2019 was analyzed using mean and percentage. The means of the prices were used in the calculations of price indices and rates of inflation on building materials. Findings revealed that factors responsible for the rising cost of building materials are the exchange rate of the Nigeria Naira with a mean rating (MR) = 4.4; cost of fuel and power supply, MR = 4.3; and changes in government policies and legislation, MR = 4.2, while fluctuations in the construction cost with MR = 2.8; reduced volume of construction output, MR = 2.52; and risk of project abandonment, MRA = 2.51, were the three effects. The study concluded that adverse effects could result in a downward effect on the contributions of the construction industries on the gross domestic product (GDP) in the nation’s economy. Among the recommendations proffered include that the government should formulate a policy that will play down the agitations on the use of imported building materials by encouraging research in the production of local building materials.

Keywords: effects, rising, cost, building, materials

Procedia PDF Downloads 129