Search results for: academic speed and accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8927

Search results for: academic speed and accuracy

6017 Single-Parent Families and Its Impact on the Psycho Child Development in Schools

Authors: Sylvie Sossou, Grégoire Gansou, Ildevert Egue

Abstract:

Introduction: The mission of the family and the school is to educate and train citizens of the city. But the family’s values , parental roles, respect for life collapse in their traditional African form. Indeed laxity with regard to divorce, liberal ideas about child rearing influence the emotional life of the latter. Several causes may contribute to the decline in academic performance. In order to seek a psychological solution to the issue, a study was conducted in 6 schools at the 9th district in Cotonou, cosmopolitan city of Benin. Objective: To evaluate the impact of single parenthood on the psycho child development. Materials and Methods: Questionnaires and interviews were used to gather verbal information. The questionnaires were administered to parents and children (schoolchildren 4, 5 and six form) from 7 to 12 years in lone parenthood. The interview was done with teachers and school leaders. We identified 209 cases of children living with a "single-parent" and 68 single parents. Results: Of the 209 children surveyed the results showed that 116 children are cut relational triangle in early childhood (before 3 years). The psychological effects showed that the separation has caused sadness for 52 children, anger 22, shame 17, crying at 31 children, fear for 14, the silence at 58 children. In front of complete family’s children, these children experience feelings of aggression in 11.48%; sadness in 30.64%; 5.26% the shame, the 6.69% tears; jealousy in 2.39% and 2.87% of indifference. The option to get married in 44.15% of children is a challenge to want to give a happy childhood for their offspring; 22.01% feel rejected, there is uncertainty for 11.48% of cases and 25.36% didn’t give answer. 49, 76% of children want to see their family together; 7.65% are against to avoid disputes and in many cases to save the mother of the father's physical abuse. 27.75% of the ex-partners decline responsibility in the care of the child. Furthermore family difficulties affecting the intellectual capacities of children: 37.32% of children see school difficulties related to family problems despite all the pressure single-parent to see his child succeed. Single parenthood affects inter-family relations: pressure 33.97%; nervousness 24.88%; overprotection 29.18%; backbiting 11.96%, are the lives of these families. Conclusion: At the end of the investigation, results showed that there is a causal relationship between psychological disorders, academic difficulties of children and quality of parental relationships. Other cases may exist, but the lack of resources meant that we have only limited at 6 schools. Early psychological treatment for these children is needed.

Keywords: single-parent, psycho child, school, Cotonou

Procedia PDF Downloads 394
6016 Prevalence and Factors Associated with Illicit Drug Use Among Undergraduate Students in the University of Lagos, Nigeria

Authors: Abonyi, Emmanuel Ebuka, Amina Jafaru O.

Abstract:

Background: Illicit substance use among students is a phenomenon that has been widely studied, but it remains of interest due to its high prevalence and potential consequences. It is a major mental health concern among university students which may result in behavioral and academic problems, psychiatric disorders, and infectious diseases. Thus, this study was done to ascertain the prevalence and factors associated with the use of illicit drugs among these groups of people. Methods: A cross-sectional and descriptive survey was conducted among undergraduate students of the University of Lagos for the duration of three(3) months (August to October 2021). A total number of 938 undergraduate students were selected from seventeen faculties in the university. Pretested questionnaires were administered, completed, and returned. The data were analyzed using descriptive statistics and multivariate regression analysis. Results: From the data collected, it was observed that out of 938 undergraduate students of the University of Lagos that completed and returned the questionnaires, 56.3% were female and 43.7% were male. No gender differences were observed in the prevalence of use of any of the illicit substances. The result showed that the majority of the students that participated in the research were females(56.6%); it was observed that there were a total of 541 2nd-year students(57.7%) and 397 final-year students(42.3). Students between the age brackets of 20- 24 years had the highest frequency of 648(69.1%) of illicit drug use and students in none health-related disciplines. The result also showed that the majority of the students reported that they use Marijuana (31.7%), while lifetime use of LSD (6.3%), Heroin(4.8%), Cocaine (4.7%), and Ecstasy(4.5), Ketamine (3.4%). Besides, the use of alcohol was below average(44.1%). Additionally, Marijuana was among the ones that were mostly taken by students having a higher percentage and most of these respondents had experienced relationship problems with their family and intentions (50.9%). From the responses obtained, major reasons students indulge in illicit drug use were; curiosity to experiment, relief of stress after rigorous academic activities, social media influence, and peer pressure. Most Undergraduate students are in their most hyperactive stage in life, which makes them vulnerable to always want to explore practically every adventure. Hence, individual factors and social media influence are identified as major contributors to the prevalence of illicit drug use among undergraduate students at the University of Lagos, Nigeria. Conclusion: Control programs are most needed among the students. They should be comprehensive and focused on students' psycho-education about substances and their related negative consequences, plus the promotion of students' life skills, and integration into the family – and peer-based preventive interventions.

Keywords: illicit drugs, addiction, undergraduate students, prevalence, substances

Procedia PDF Downloads 108
6015 Understanding Consumer Behaviors by Using Neuromarketing Tools and Methods

Authors: Tabrej Khan

Abstract:

Neuromarketing can refer to the commercial application of neuroscience technologies and insights to drive business further. On the other side, consumer neuroscience can be seen as the academic use of neuroscience to better understand marketing effects on consumer behavior. Consumer Neuroscience and Neuromarketing is a multidisciplinary effort between economics, psychology, and neuroscience and information technology. Traditional methods are using survey, interviews, focus group people are overtly and consciously reporting on their experience and thoughts. The unconscious side of customer behavior is largely unmeasured in the traditional methods. Neuroscience has a potential to understand the unconscious part. Through this paper, we are going to present specific results of selected tools and methods that are used to understand consumer behaviors.

Keywords: neuromarketing, neuroscience, consumer behaviors, tools

Procedia PDF Downloads 406
6014 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors

Authors: Navid Kaboudi, Ali Shayanfar

Abstract:

Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.

Keywords: logistic regression, breastfeeding, descriptors, penetration

Procedia PDF Downloads 76
6013 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 148
6012 Industrial Engineering Higher Education in Saudi Arabia: Assessing the Current Status

Authors: Mohammed Alkahtani, Ahmed El-Sherbeeny

Abstract:

Industrial engineering is among engineering disciplines that have been introduced relatively recently to higher education in Saudi Arabian engineering colleges. The objective of this paper is to shed light on the history and status of IE higher education in different Saudi universities, including statistics comparing student enrollment and graduation in different Saudi public and private universities. This paper then proposes how industrial engineering programs could participate successfully in the Saudi Vision 2030. Finally, the authors show the results of a survey conducted on a number of IE students evaluating various academic and administrative aspects of the IE program at King Saud University.

Keywords: higher education, history, industrial engineering, Vision 2030

Procedia PDF Downloads 328
6011 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 139
6010 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori

Abstract:

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Keywords: creativity, innovation, military, organization, teams

Procedia PDF Downloads 126
6009 Educational Leadership for Social Justice: Meeting UK Muslim Expectation

Authors: Mochammad Thalut

Abstract:

This essay discusses how educational leadership response the Muslims pupils’ problems and their expectation about education in the UK. As we know, the Muslims community in the country is increasing. However, the debate about educational leadership is still limited to the separation between religion and academic by westerns approach. It is found that there are four major problems of Muslims pupils that need to solve by the educational leader to provide social justice in education. Leader-teacher as an Islamic concept of the educational leader is an alternative approach that can be used by the educational leader to overcome the problems. In the end, it is strongly recommended to bring this issue to the leadership development program in the UK to give all aspiring heads understanding about Muslims expectation about education.

Keywords: Muslim, education, leadership, identity

Procedia PDF Downloads 259
6008 The Design of the Questionnaire of Attitudes in Physics Teaching

Authors: Ricardo Merlo

Abstract:

Attitude is a hypothetical construct that can be significantly measured to know the favorable or unfavorable predisposition that students have towards the teaching of sciences such as Physics. Although the state-of-the-art attitude test used in Physics teaching indicated different design and validation models in different groups of students, the analysis of the weight given to each dimension that supported the attitude was scarcely evaluated. Then, in this work, a methodology of attitude questionnaire construction process was proposed that allowed the teacher to design and validate the measurement instrument for different subjects of Physics at the university level developed in the classroom according to the weight considered to the affective, knowledge, and behavioural dimensions. Finally, questionnaire models were tested for the case of incoming university students, achieving significant results in the improvement of Physics teaching.

Keywords: attitude, physics teaching, motivation, academic performance

Procedia PDF Downloads 77
6007 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer

Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić

Abstract:

Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.

Keywords: dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate

Procedia PDF Downloads 297
6006 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers

Procedia PDF Downloads 717
6005 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 35
6004 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key

Authors: Fola John Adeyeye

Abstract:

In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.

Keywords: cryptosystem, private and public key, DPML, symmetric group Pn

Procedia PDF Downloads 208
6003 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 89
6002 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany

Authors: Knol Hester, Müller Swantje, Danchenko Natalya

Abstract:

Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.

Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment

Procedia PDF Downloads 138
6001 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle

Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez

Abstract:

Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.

Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop

Procedia PDF Downloads 151
6000 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 96
5999 Student Attendance System Applying Reed Solomon ECC

Authors: Mohd Noah A. Rahman, Armandurni Abd Rahman, Afzaal H. Seyal, Md Rizal Md Hendry

Abstract:

The article reports an automated student attendance system modeled and developed for use at a Vocational school. This project focuses on developing an application using a QR code utilizing the Reed-Solomon error correction code using a smartphone scanned through a webcam. This system enables us to speed up the process of taking attendance and would save us valuable teaching time. This is planned to help students avoid consequences that may result from poor attendances which will eventually penalize them from sitting their final examination as required.

Keywords: QR code, Reed-Solomon, error correction, system design.

Procedia PDF Downloads 394
5998 Making the Choice: Educational Mobility Decisions of International Doctoral Students

Authors: Adel Pasztor

Abstract:

International doctoral mobility is a largely under-researched component of academic mobility and migration. This is in stark contrast to the case of student mobility where much research has been undertaken on Erasmus students; or the growing research on academic staff mobility which can be viewed as a key part of highly skilled migration. The aim of this paper is to remedy the situation by specifically focusing on international doctoral students studying at elite higher education institutions in the United Kingdom. In doing so, in-depth qualitative interviews with doctoral students and recent graduates were carried out in order to identify the signifiers of an internationally mobile doctoral student and unpack the decision-making processes leading onto the choice of higher education institution abroad. Overall, a diverse range of degree subjects from within the humanities and the social sciences were covered with a relatively large spread of nationalities which include the following countries: Italy, Germany, Hungary, Latvia, Bulgaria, Turkey, Lebanon, Israel, Australia, USA, China, and Chile. The interview questions were designed to probe the motivations, choices, educational trajectories and career plans of international doctoral students relative to their social class background, gender, nationality or funding. It was clear from the interviews that there were two main types of international doctoral students: those who ‘did not think anything else was ever a serious possibility’, contrasted with the other, more opportune type, to whom ‘it happened to be a PhD’. There were marked differences between the two types since initial access to university, mainly because educational decisions such as the doctorate do not happen in a vacuum, rather are built on the individual’s higher education aspirations and previous educational choices. The results were in line with existing literature suggesting that those with higher educated parents and from schools strongly supporting the choice process fared better as they were able to make well informed, well thought through as well as strategic decisions for their future involving the very best universities within the national boundaries. Being ‘at the right place’ often meant access to prestigious doctoral scholarships thus, the route of the PhD has been chosen even if it did not necessarily enhance career opportunities. At the same time, the initial higher education choices of those with limited capital were played out locally, although they did aim for the best universities within their geographically constrained landscape of choice. Here, the majority of students referred to some ‘turning points’ in their lives which lead them towards considering international doctoral opportunities but essentially their proactive, do-it-yourself attitude was behind the life-changing educational opportunities.

Keywords: choice, doctoral students, international mobility, PhD, UK

Procedia PDF Downloads 256
5997 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD

Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh

Abstract:

In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.

Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap

Procedia PDF Downloads 535
5996 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method

Authors: A.R. Eskandari, M.R. Eskandari

Abstract:

A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)

Procedia PDF Downloads 390
5995 Urban Logistics Dynamics: A User-Centric Approach to Traffic Modelling and Kinetic Parameter Analysis

Authors: Emilienne Lardy, Eric Ballot, Mariam Lafkihi

Abstract:

Efficient urban logistics requires a comprehensive understanding of traffic dynamics, particularly as it pertains to kinetic parameters influencing energy consumption and trip duration estimations. While real-time traffic information is increasingly accessible, current high-precision forecasting services embedded in route planning often function as opaque 'black boxes' for users. These services, typically relying on AI-processed counting data, fall short in accommodating open design parameters essential for management studies, notably within Supply Chain Management. This work revisits the modelling of traffic conditions in the context of city logistics, emphasizing its significance from the user’s point of view, with two focuses. Firstly, the focus is not on the vehicle flow but on the vehicles themselves and the impact of the traffic conditions on their driving behaviour. This means opening the range of studied indicators beyond vehicle speed, to describe extensively the kinetic and dynamic aspects of the driving behaviour. To achieve this, we leverage the Art. Kinema parameters are designed to characterize driving cycles. Secondly, this study examines how the driving context (i.e., exogenous factors to the traffic flow) determines the mentioned driving behaviour. Specifically, we explore how accurately the kinetic behaviour of a vehicle can be predicted based on a limited set of exogenous factors, such as time, day, road type, orientation, slope, and weather conditions. To answer this question, statistical analysis was conducted on real-world driving data, which includes high-frequency measurements of vehicle speed. A Factor Analysis and a Generalized Linear Model have been established to link kinetic parameters with independent categorical contextual variables. The results include an assessment of the adjustment quality and the robustness of the models, as well as an overview of the model’s outputs.

Keywords: factor analysis, generalised linear model, real world driving data, traffic congestion, urban logistics, vehicle kinematics

Procedia PDF Downloads 72
5994 Evaluation Model in the Branch of Virtual Education of “Universidad Manuela Beltrán” Bogotá-Colombia

Authors: Javier López

Abstract:

This Paper presents the evaluation model designed for the virtual education branch of The “Universidad Manuela Beltrán, Bogotá-Colombia”. This was the result of a research, developed as a case study, which had three stages: Document review, observation, and a perception survey for teachers. In the present model, the evaluation is a cross-cutting issue to the educational process. Therefore, it consists in a group of actions and guidelines which lead to analyze the student’s learning process from the admission, during the academic training, and to the graduation. This model contributes to the evaluation components which might interest other educational institutions or might offer methodological guidance to consolidate an own model

Keywords: model, evaluation, virtual education, learning process

Procedia PDF Downloads 456
5993 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 63
5992 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen

Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto

Abstract:

Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.

Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen

Procedia PDF Downloads 165
5991 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 51
5990 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 94
5989 Reducing Accidents Using Text Stops

Authors: Benish Chaudhry

Abstract:

Most of the accidents these days are occurring because of the ‘text-and-drive’ concept. If we look at the structure of cities in UAE, there are great distances, because of which it is impossible to drive without using or merely checking the cellphone. Moreover, if we look at the road structure, it is almost impossible to stop at a point and text. With the introduction of TEXT STOPs, drivers will be able to stop different stops for a maximum of 1 and a half-minute in order to reply or write a message. They can be introduced at a distance of 10 minutes of driving on the average speed of the road, so the drivers can look forward to a stop and can reply to a text when needed. A user survey indicates that drivers are willing to NOT text-and-drive if they have such a facility available.

Keywords: transport, accidents, urban planning, road planning

Procedia PDF Downloads 397
5988 A Holistic Approach to Institutional Cyber Security

Authors: Mehmet Kargaci

Abstract:

It is more important to access information than to get the correct information and to transform it to the knowledge in a proper way. Every person, organizations or governments who have the knowledge now become the target. Cyber security involves the range of measures to be taken from individual to the national level. The National institutions refer to academic, military and major public and private institutions, which are very important for the national security. Thus they need further cyber security measures. It appears that the traditional cyber security measures in the national level are alone not sufficient, while the individual measures remain in a restricted level. It is evaluated that the most appropriate method for preventing the cyber vulnerabilities rather than existing measures are to develop institutional measures. This study examines the cyber security measures to be taken, especially in the national institutions.

Keywords: cyber defence, information, critical infrastructure, security

Procedia PDF Downloads 541