Search results for: regression estimators
426 Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand
Authors: Pirakorn Sukonthaman, Paphitchaya Temphattharachok, Warangkana Thammasanya, Kraichart Tantrakarnarpa, Tanongson Tientavorn
Abstract:
Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term.Keywords: pesticides, plasma cholinesterase level, spraymen, agricultural workers
Procedia PDF Downloads 353425 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 104424 Life Satisfaction of Non-Luxembourgish and Native Luxembourgish Postgraduate Students
Authors: Chrysoula Karathanasi, Senad Karavdic, Angela Odero, Michèle Baumann
Abstract:
It is not only the economic determinants that impact on life conditions, but maintaining a good level of life satisfaction (LS) may also be an important challenge currently. In Luxembourg, university students receive financial aid from the government. They are then registered at the Centre for Documentation and Information on Higher Education (CEDIES). Luxembourg is built on migration with almost half its population consisting of foreigners. It is upon this basis that our research aims to analyze the associations with mental health factors (health satisfaction, psychological quality of life, worry), perceived financial situation, career attitudes (adaptability, optimism, knowledge, planning) and LS, for non-Luxembourgish and native postgraduate students. Between 2012 and 2013, postgraduates registered at CEDIES were contacted by post and asked to participate in an online survey with either the option of English or French. The study population comprised of 644 respondents. Our statistical analysis excluded: those born abroad who had Luxembourgish citizenship, or those born in Luxembourg who did not have citizenship. Two groups were formed one consisting 147 non-Luxembourgish and the other 284 natives. A single item measured LS (1=not at all satisfied to 10=very satisfied). Bivariate tests, correlations and multiple linear regression models were used in which only significant relationships (p<0.05) were integrated. Among the two groups no differences were found between LS indicators (7.8/10 non-Luxembourgish; 8.0/10 natives) as both were higher than the European indicator of 7.2/10 (for 25-34 years). In the case of non-Luxembourgish students, they were older than natives (29.3 years vs. 26.3 years) perceived their financial situation as more difficult, and a higher percentage of their parents had an education level higher than a Bachelor's degree (father 59.2% vs 44.6% for natives; mother 51.4% vs 33.7% for natives). In addition, the father’s education was related to the LS of postgraduates and the higher was the score, the greater was the contribution to LS. Whereas for native students, when their scores of health satisfaction and career optimism were higher, their LS’ score was higher. For both groups their LS was linked to mental health-related factors, perception of their financial situation, career optimism, adaptability and planning. The higher the psychological quality of life score was, the greater the LS of postgraduates’ was. Good health and positive attitudes related to the job market enhanced their LS indicator.Keywords: career attributes, father's education level, life satisfaction, mental health
Procedia PDF Downloads 371423 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 76422 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India
Authors: Amritee Bora, B. S. Mipun
Abstract:
Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability
Procedia PDF Downloads 166421 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients
Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda
Abstract:
Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention
Procedia PDF Downloads 210420 Variability in Contraception Choices and Abortion Rates among Female Garment Factory Workers in Urban and Rural Cambodia
Authors: Olalekan Olaluwoye, Joanne Williams, Elizabeth Hoban
Abstract:
Background: Modern contraceptives are effective in preventing unwanted pregnancies and therefore the potential to reduce abortion rates. There is a need for information about how rates of contraceptive use and abortion vary across Cambodia and the relationship between the prevalence of modern contraception use and abortion rates. This study compares the use of contraception and abortion among female garment factory workers in rural and urban areas of Cambodia. Method: Cross-sectional surveys were conducted with 1701 women working in eleven garment factories in rural and urban areas of Cambodia. Sexual and reproductive health data were collected using Audio-Assisted Survey Interviews and analysed using STATA 14 software. Findings: Over 70% of the respondents were less than 30 years of age across both rural and urban settings and over 50% have only primary education, thus the study population was largely young women with limited education. A significantly higher proportion of the rural women earned over $200 in the previous month compared with their urban counterparts. The majority of the urban women (51.5%) were married, while single women (46.9%) made up the largest group working in the rural factories. A significantly larger proportion of women in the rural areas (83.9%) were sexually active compared to the urban women (50.9%). More women from the rural areas (41.4%) had been pregnant at some time compared with the urban population (37.7%). The use of any contraceptive method among sexually active women was significantly higher in the rural areas (80.1%) compared to the urban areas (65.7%) with p-value=0.000. However, among those women who used contraception, the prevalence of modern contraception use was slightly higher in the urban population (68.8% urban, 63.4% rural, p-value=0.1). For women who had a history of pregnancy the abortion prevalence was higher among rural women (43.8%) compared to their urban counterparts (37.7%). Regression analysis showed that after adjustment for the demographic variables (age, relationship status, income, education) only age and relationship status had a significant influence on the use of modern contraception.Single females who were sexually active and older women, who had potentially completed their families, were more likely to choose modern contraception. Conclusion: Although overall the use of contraception was higher among rural women, the use of modern contraception was higher among urban women.This finding may partly explain the higher rates of abortion among women in the rural areas as traditional contraception methods have higher failure rates and are more likely to result in an unplanned pregnancy.Despite the regional variation, the high rates of abortion across the country suggest there is a need for improve education on family planning among female garment factory workers in Cambodia.Keywords: abortion, Cambodia, contraception, garment factory
Procedia PDF Downloads 150419 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data
Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez
Abstract:
Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.Keywords: breast cancer, incidence, cancer registries, castilla-la mancha
Procedia PDF Downloads 311418 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities
Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson
Abstract:
Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.Keywords: education, facilities, learning-resources, technology-tools
Procedia PDF Downloads 23417 Development of a Risk Disclosure Index and Examination of Its Determinants: An Empirical Study in Indian Context
Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav
Abstract:
Worldwide regulators, practitioners and researchers view risk-disclosure as one of the most important steps that will promote corporate accountability and transparency. Recognizing this growing significance of risk disclosures, the paper first develops a risk disclosure index. Covering 69 risk items/themes, this index is developed by employing thematic content analysis and encompasses three attributes of disclosure: namely, nature (qualitative or quantitative), time horizon (backward-looking or forward-looking) and tone (no impact, positive impact or negative impact). As the focus of study is on substantive rather than symbolic disclosure, content analysis has been carried out manually. The study is based on non-financial companies of Nifty500 index and covers a ten year period from April 1, 2005 to March 31, 2015, thus yielding 3,872 annual reports for analysis. The analysis reveals that (on an average) only about 14% of risk items (i.e. about 10 out 69 risk items studied) are being disclosed by Indian companies. Risk items that are frequently disclosed are mostly macroeconomic in nature and their disclosures tend to be qualitative, forward-looking and conveying both positive and negative aspects of the concerned risk. The second objective of the paper is to gauge the factors that affect the level of disclosures in annual reports. Given the panel nature of data, and possible endogeneity amongst variables, Diff-GMM regression has been applied. The results indicate that age and size of firms have a significant positive impact on disclosure quality, whereas growth rate does not have a significant impact. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of disclosures. In terms of corporate governance variables, board size, board independence, CEO duality, presence of CRO and constitution of risk management committee appear to be significant factors in determining the quality of risk disclosures. It is noteworthy that the study contributes to literature by putting forth a variant to existing disclosure indices that not only captures the quantity but also the quality of disclosures (in terms of semantic attributes). Also, the study is a first of its kind attempt in a prominent emerging market i.e. India. Therefore, this study is expected to facilitate regulators in mandating and regulating risk disclosures and companies in their endeavor to reduce information asymmetry.Keywords: risk disclosure, voluntary disclosures, corporate governance, Diff-GMM
Procedia PDF Downloads 162416 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study
Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel
Abstract:
Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence
Procedia PDF Downloads 212415 Delivering on Infrastructure Maintenance for Socio-Economic Growth: Exploration of South African Infrastructure for a Sustained Maintenance Strategy
Authors: Deenadayalan Govender
Abstract:
In South Africa, similar to nations globally, the prevailing tangible link between people and the state is public infrastructure. Services delivered through infrastructure to the people and to the state form a critical enabler for social development in communities and economic development in the country. In this regard, infrastructure, being the backbone to a nation’s prosperity, ideally should be effectively maintained for seamless delivery of services. South African infrastructure is in a state of deterioration, which is leading to infrastructure dysfunction and collapse and is negatively affecting development of the economy. This infrastructure deterioration stems from deficiencies in maintenance practices and strategies. From the birth of South African democracy, government has pursued socio-economic transformation and the delivery of critical basic services to decrease the broadening boundaries of disparity. In this regard, the National Infrastructure Plan borne from strategies encompassed in the National Development Plan is given priority by government in delivering strategic catalytic infrastructure projects. The National Infrastructure Plan is perceived to be the key in unlocking opportunities that generate economic growth, kerb joblessness, alleviate poverty, create new entrepreneurial prospects, and mitigate population expansion and rapid urbanisation. Socio-economic transformation benefits from new infrastructure spend is not being realised as initially anticipated. In this context, South Africa is currently in a state of weakening economic growth, with further amassed levels of joblessness, unremitting poverty and inequality. Due to investor reluctance, solicitation of strategic infrastructure funding is progressively becoming a debilitating challenge in all government institutions. Exacerbating these circumstances further, is substandard functionality of existing infrastructure subsequent to inadequate maintenance practices. This in-depth multi-sectoral study into the state of infrastructure is to understand the principal reasons for infrastructure functionality regression better; furthermore, prioritised investigations into progressive maintenance strategies is focused upon. Resultant recommendations reveal enhanced maintenance strategies, with a vision to capitalize on infrastructure design life, and also give special emphasis to socio-economic development imperatives in the long-term. The research method is principally based on descriptive methods (survey, historical, content analysis, qualitative).Keywords: infrastructure, maintenance, socio-economic, strategies
Procedia PDF Downloads 140414 Factors Impacting Training and Adult Education Providers’ Business Performance: The Singapore Context
Abstract:
The SkillsFuture Singapore’s mission to develop a responsive and forward-looking Training and Adult Education (TAE) and workforce development system is undergirded by how successful TAE providers are in their business performance and strategies that strengthen their operational efficiency and processes. Therefore, understanding the factors that drive the business performance of TAE providers is critical to the success of SkillsFuture Singapore’s initiatives. This study aims to investigate how business strategy, work autonomy, work intensity and professional development support impact the business performance of private TAE providers. Specifically, the three research questions are: (1) Are there significant relationships between the above-mentioned four factors and TAE providers’ business performance?; (2) Are there significant differences on the four factors between low and high TAE providers’ business performance groups?; and (3) To what extent and in what manner do the four factors predict TAE providers’ business performance? This was part of the first national study on organizations and professionals working in the Training and Adult Education (TAE) sector. Data from 265 private TAE providers where respondents were Chief Executive Officers representatives from the Senior Management were analyzed. The results showed that business strategy (the extent that the organization leads the way in terms of developing new products and services; uses up-to-date learning technologies; customizes its products and services to the client’s needs), work autonomy (the extent that the staff personally have an influence on how hard they work; deciding what tasks they are to do; deciding how they are to do the tasks, and deciding the quality standards to which they work) and professional development support (both monetary and non-monetary support and incentives) had positive and significant relationships with business performance. However, no significant relationship is found between work intensity and business performance. A business strategy, work autonomy and professional development support were significantly higher in the high business performance group compared to the low-performance group among the TAE providers. Results of hierarchical regression analyses controlling for the size of the TAE providers showed significant impacts of business strategy, work autonomy and professional development support on TAE providers’ business performance. Overall, the model accounted for 27% of the variance in TAE providers’ business performance. This study provides policymakers with insights into improving existing policies, designing new initiatives and implementing targeting interventions to support TAE providers. The findings also have implications on how the TAE providers could better formulate their organizational strategies and business models. Finally, limitations of study, along with directions for future research will be discussed in the paper.Keywords: adult education, business performance, business strategy, training, work autonomy
Procedia PDF Downloads 208413 Instructors Willingness, Self-Efficacy Beliefs, Attitudes and Knowledge about Provisions of Instructional Accommodations for Students with Disabilities: The Case Selected Universities in Ethiopia
Authors: Abdreheman Seid Abdella
Abstract:
This study examined instructors willingness, self-efficacy beliefs, attitudes and knowledge about provisions of instructional accommodations for students with disabilities in universities. Major concepts used in this study operationally defined and some models of disability were reviewed. Questionnaires were distributed to a total of 181 instructors from four universities and quantitative data was generated. Then to analyze the data, appropriate methods of data analysis were employed. The result indicated that on average instructors had positive willingness, strong self-efficacy beliefs and positive attitudes towards providing instructional accommodations. In addition, the result showed that the majority of participants had moderate level of knowledge about provision of instructional accommodations. Concerning the relationship between instructors background variables and dependent variables, the result revealed that location of university and awareness raising training about Inclusive Education showed statistically significant relationship with all dependent variables (willingness, self-efficacy beliefs, attitudes and knowledge). On the other hand, gender and college/faculty did not show a statistically significant relationship. In addition, it was found that among the inter-correlation of dependent variables, the correlation between attitudes and willingness to provide accommodations was the strongest. Furthermore, using multiple linear regression analysis, this study also indicated that predictor variables like self-efficacy beliefs, attitudes, knowledge and teaching methodology training made statistically significant contribution to predicting the criterion willingness. Predictor variables like willingness and attitudes made statistically significant contribution to predicting self-efficacy beliefs. Predictor variables like willingness, Special Needs Education course and self-efficacy beliefs made statistically significant contribution to predict attitudes. Predictor variables like Special Needs Education courses, the location of university and willingness made statistically significant contribution to predicting knowledge. Finally, using exploratory factor analysis, this study showed that there were four components or factors each that represent the underlying constructs of willingness and self-efficacy beliefs to provide instructional accommodations items, five components for attitudes towards providing accommodations items and three components represent the underlying constructs for knowledge about provisions of instructional accommodations items. Based on the findings, recommendations were made for improving the situation of instructional accommodations in Ethiopian universities.Keywords: willingness, self-efficacy belief, attitude, knowledge
Procedia PDF Downloads 270412 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube
Authors: Cathal Merz, Gareth O’Donnell
Abstract:
Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile
Procedia PDF Downloads 117411 Patterns of Associations between Child Maltreatment, Maternal Childhood Adversity, and Maternal Mental Well-Being: A Cross-Sectional Study in Tirana, Albania
Authors: Klea Ramaj
Abstract:
Objectives: There have recently been increasing calls to better understand the intergenerational transmission of adverse childhood experiences (ACEs). In particular, little is known about the links between maternal (ACEs), maternal stress, maternal depression, and child abuse against toddlers in countries in South-East Europe. This paper, therefore, aims to present new descriptive data on the epidemiology of maternal mental well-being and maternal ACEs in the capital of Albania, Tirana. It also aims to advance our understanding of the overlap between maternal stress, maternal depression, maternal exposure to ACEs, and child abuse toward two-to-three-year-old. Methods: This is a cross-sectional study conducted with a representative sample of 328 mothers of two-to-three-year-olds, recruited through public nurseries located in 8 diverse socio-economic and geographical areas in Tirana, Albania. Maternal stress was measured through the perceived stress scale (α = 0.78); maternal depression was measured via the patient health questionnaire (α = 0.77); maternal exposure to ACEs was captured via the ACEs international questionnaire (α = 0.77); and child maltreatment was captured via ISPCAN ICAST-P (α = 0.66). The main outcome examined here will be child maltreatment. The paper will first present estimates of maternal stress, depression, and child maltreatment by demographic groups. It will then use multiple regression to examine associations between child maltreatment and risk factors in the domains of maternal stress, maternal depression, and maternal ACEs. Results: Mothers' mean age was 32.3 (SD = 4.24), 87.5% were married, 51% had one child, and 83.5% had completed higher education. Analyses show high levels of stress and exposure to childhood adversity among mothers in Tirana. 97.5% of mothers perceived stress during the last month, and 89% had experienced at least one childhood adversity as measured by the ACE questionnaire, with 20.2% having experienced 4+ ACEs. Analyses show significant positive associations between maternal ACEs and maternal stress r(325) = 0.25, p = 0.00. Mothers with a high number of ACEs were more likely to abuse their children r(327) = .43, p = 0.00. 32% of mothers have used physical discipline with their 2–3-year-old, 84% have used psychological discipline, and 35% have neglected their toddler at least once or twice. The mothers’ depression levels were also positively and significantly associated with child maltreatment r(327) = .34, p = 0.00. Conclusions: This study provides cross-sectional data on the link between maternal exposure to early adversity, maternal mental well-being, and child maltreatment within the context of Tirana, Albania. The results highlight the importance of establishing policies that encourage maternal support, positive parenting, and family well-being in order to help break the cycle of transgenerational violence.Keywords: child maltreatment, maternal mental well-being, intergenerational abuse, Tirana, Albania
Procedia PDF Downloads 124410 The Role of Cognitive Control and Social Camouflage Associated with Social Anxiety Autism Spectrum Conditions
Authors: Siqing Guan, Fumiyo Oshima, Eiji Shimizu, Nozomi Tomita, Toru Takahashi, Hiroaki Kumano
Abstract:
Risk factors for social anxiety in autism spectrum conditions involve executive attention, emotion regulation, and thought regulation as processes of cognitive dysregulation. Social camouflaging behaviors as strategies used to mask and/or compensate for autism characteristics during social interactions in autism spectrum conditions have also been emphasized. However, the role of cognitive dysregulation and social camouflaging related to social anxiety in autism spectrum conditions has not been clarified. Whether these factors are specific to social anxiety in autism spectrum conditions or common to social anxiety independent of autism spectrum conditions needs to be clarified. Here, we explored risk factors specific to social anxiety in autism spectrum conditions and general risk factors for social anxiety independent of autism spectrum conditions. From the Japanese participants in early adulthood (age=18~39) of the online survey in Japan, those who exceeded the Japanese version Autism-Spectrum Quotient cutoff (33 points or more )were divided into the autism spectrum conditions group (ASC; N=255, mean age=32.08, SD age=5.16)and those who did not exceed the cutoff were divided into the non-autism spectrum conditions group (Non-ASC; N=255, mean age=31.70, SD age=5.09). Using the Japanese versions of the Social Phobia Scale, the Social Interaction Anxiety Scale, and the Short Fear of Negative Evaluation Scale, a composite score for social anxiety was calculated using a method of principal. We also measured emotional control difficulties using the Difficulties in Emotion Regulation Scale, executive attention using the Effortful Control Scale for Adults, rumination using the Rumination-Reflection Questionnaire, and worry using the Penn State Worry Questionnaire. This study was passed through the review of the Ethics Committee. No conflicts of interest. Multiple regression analysis with forced entry method was used to predict social anxiety in the ASC and non-ASC groups separately, based on executive attention, emotion dysregulation, worry, rumination, and social camouflage. In the ASC group, emotion dysregulation (β=.277, p<.001), worry (β=.162, p<.05), assimilation (β=.308, p<.001) and masking (β=.275, p<.001) were significant predictors of social anxiety (F (7,247) = 45.791, p <.001, R2=.565). In the non-ASC groups,emotion dysregulation (β=.171, p<.05), worry (β=.344,p <.001), assimilation (β=.366,p <.001) and executive attention (β=-.132,p <.05) were significant predictors of social anxiety (F (7,207) =47.333, p <.001, R2=.615).The findings suggest that masking was shown to be a risk factor for social anxiety specific to autism spectrum conditions, while emotion dysregulation, worry, and assimilation were shown to be common risk factors for social anxiety, regardless of autism spectrum conditions. In addition, executive attention is a risk factor for social anxiety without autism spectrum conditions.Keywords: autism spectrum, cognitive control, social anxiety, social camouflaging
Procedia PDF Downloads 208409 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia
Authors: Asrat Agalu Abejew
Abstract:
Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.Keywords: AMR, trend, pattern, MDR
Procedia PDF Downloads 76408 How to Evaluate Resting and Walking Energy Expenditures of Individuals with Different Body Mass Index
Authors: Zeynep Altinkaya, Ugur Dal, Figen Dag, Dilan D. Koyuncu, Merve Turkegun
Abstract:
Obesity is defined as abnormal fat-tissue accumulation as a result of imbalance between energy intake and expenditure. Since 50-70% daily energy expenditure of sedantary individuals is consumed as resting energy expenditure (REE), it takes an important place in the evaluation of new methods for obesity treatment. Also, it is known that walking is a prevalent activity in the prevention of obesity. The primary purpose of this study is to evaluate and compare the resting and walking energy expenditures of individuals with different body mass index (BMI). In this research, 4 groups are formed as underweight (BMI < 18,5 kg/m2), normal (BMI=18,5-24,9 kg/m2), overweight (BMI=25-29,9 kg/m2), and obese (BMI ≥ 30) according to BMI of individuals. 64 healthy young adults (8 man and 8 woman per group, age 18-30 years) with no known gait disabilities were recruited in this study. The body compositions of all participants were measured via bioelectric empedance analysis method. The energy expenditure of individuals was measured with indirect calorimeter method as inspired and expired gas samples are collected breath-by-breath through a special facemask. The preferred walking speed (PWS) of each subject was determined by using infrared sensors placed in 2nd and 12th meters of 14 m walkway. The REE was measured for 15 min while subjects were lying, and walking energy expenditure was measured during subjects walk in their PWS on treadmill. The gross REE was significantly higher in obese subjects compared to underweight and normal subjects (p < 0,0001). When REE was normalized to body weight, it was higher in underweight and normal groups than overweight and obese groups (p < 0,0001). However, when REE was normalized to fat-free mass, it did not differ significantly between groups. The gross walking energy expenditure in PWS was higher in obese and overweight groups than underweight and normal groups (p < 0,0001). The regression coefficient between gross walking energy expenditure and body weight was significiant among normal and obese groups (p < 0.05). It accounted for 70,5% of gross walking energy expenditure in normal group, and 57,9% of gross walking energy expenditure in obese group. It is known that obese individuals have more metabolically inactive fat-tissue compared to other groups. While excess fat-tissue increases total body weight, it does not contribute much to REE. Therefore, REE results normalized to body weight could lead to misleading results. In order to eliminate fat-mass effect on REE of obese individuals, REE normalized to fat-free mass should be used to acquire more accurate results. On the other hand, the fat-mass increasement raises energy requirement while walking to retain the body balance. Thus, gross walking energy expenditure should be taken into consideration for the evaluating energy expenditure of walking.Keywords: body composition, obesity, resting energy expenditure, walking energy expenditure
Procedia PDF Downloads 388407 The Magnitude and Associated Factors of Immune Hemolytic Anemia among Human Immuno Deficiency Virus Infected Adults Attending University of Gondar Comprehensive Specialized Hospital North West Ethiopia 2021 GC, Cross Sectional Study Design
Authors: Samul Sahile Kebede
Abstract:
Back ground: -Immune hemolytic anemia commonly affects human immune deficiency, infected individuals. Among anemic HIV patients in Africa, the burden of IHA due to autoantibody was ranged from 2.34 to 3.06 due to the drug was 43.4%. IHA due to autoimmune is potentially a fatal complication of HIV, which accompanies the greatest percent from acquired hemolytic anemia. Objective: -The main aim of this study was to determine the magnitude and associated factors of immune hemolytic anemia among human immuno deficiency virus infected adults at the university of Gondar comprehensive specialized hospital north west Ethiopia from March to April 2021. Methods: - An institution-based cross-sectional study was conducted on 358 human immunodeficiency virus-infected adults selected by systematic random sampling at the University of Gondar comprehensive specialized hospital from March to April 2021. Data for socio-demography, dietary and clinical data were collected by structured pretested questionnaire. Five ml of venous blood was drawn from each participant and analyzed by Unicel DHX 800 hematology analyzer, blood film examination, and antihuman globulin test were performed to the diagnosis of immune hemolytic anemia. Data was entered into Epidata version 4.6 and analyzed by STATA version 14. Descriptive statistics were computed and firth penalized logistic regression was used to identify predictors. P value less than 0.005 interpreted as significant. Result; - The overall prevalence of immune hemolytic anemia was 2.8 % (10 of 358 participants). Of these, 5 were males, and 7 were in the 31 to 50 year age group. Among individuals with immune hemolytic anemia, 40 % mild and 60 % moderate anemia. The factors that showed association were family history of anemia (AOR 8.30 at 95% CI 1.56, 44.12), not eating meat (AOR 7.39 at 95% CI 1.25, 45.0), and high viral load 6.94 at 95% CI (1.13, 42.6). Conclusion and recommendation; Immune hemolytic anemia is less frequent condition in human immunodeficiency virus infected adults, and moderate anemia was common in this population. The prevalence was increased with a high viral load, a family history of anemia, and not eating meat. In these patients, early detection and treatment of immune hemolytic anemia is necessary.Keywords: anemia, hemolytic, immune, auto immune, HIV/AIDS
Procedia PDF Downloads 108406 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis
Authors: Elcin Timur Cakmak, Ayse Oguzlar
Abstract:
This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.Keywords: classification algorithms, machine learning, sentiment analysis, Twitter
Procedia PDF Downloads 73405 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study
Authors: Krisztina Bohacs, Klaudia Markus
Abstract:
To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes
Procedia PDF Downloads 202404 The Mediating Role of Positive Psychological Capital in the Relationship between Self-Leadership and Career Maturity among Korean University Students
Authors: Lihyo Sung
Abstract:
Background: Children and teens in Korea experience extreme levels of academic stress. To perform better on the college entrance exam and gain admission to Korea’s most prestigious universities, they devote a significant portion of their early lives to studying. Because of their excessive preparation for entrance exams, students have become accustomed to passive and involuntary engagement. Any student starting university, however, faces new challenges that require more active involvement and self-regulated practice. As a way to tackle this issue, the study focuses on investigating the mediating effects of positive psychological capital on the relationship between self-leadership and career maturity among Korean university students. Objectives and Hypotheses: The long term goal of this study is to offer insights that promote the use of positive psychological interventions in the development and adaptation of career maturity. The current objective is to assess the role of positive psychological capital as a mediator between self-leadership and career maturity among Korean university students. Based on previous research, the hypotheses are: (a) self-leadership will be positively associated with indices of career maturity, and (b) positive psychological capital will partially or fully mediate the relationship between self-leadership and career maturity. Sample Characteristics and Sample Size: Participants in the current study consisted of undergraduate students enrolled in various courses at 5 large universities in Korea. A total of 181 students participated in the study. Methodology: A quantitative research design was adopted to test the hypotheses proposed in the current study. By using a cross-sectional approach to research, a self-administered questionnaire was used to collect data on indices of positive psychological capital, self-leadership, and career maturity. The data were analyzed by means of Cronbach's alpha, Pierson correlation test, multiple regression, path analysis, and SPSS for Windows version 22.0 using descriptive statistics. Results: Findings showed that positive psychological capital fully mediated the relationship between self-leadership and career maturity. Self-leadership significantly impacted positive psychological capital and career maturity, respectively. Scientific Contribution: The results of the current study provided useful insights into the role of psychological strengths such as positive psychological capital in improving self-leadership and career maturity. Institutions can assist in increasing positive psychological capital through the creation of positive experiences for undergraduate students, such as opportunities for coaching and mentoring.Keywords: career maturity, mediating role, positive psychological capital, self-leadership
Procedia PDF Downloads 126403 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India
Authors: Jhoga Parth, T. Nasar, K. V. Anand
Abstract:
An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation
Procedia PDF Downloads 257402 Effect of Women`s Autonomy on Unmet Need for Contraception and Family Size in India
Authors: Anshita Sharma
Abstract:
India is one of the countries to initiate family planning with intention to control the growing population by reducing fertility. In effort to this, India had introduced the National family planning programme in 1952. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services as in NFHS-1 the unmet need for limiting, spacing and total was 46 percent, 14 percent & 9 percent, respectively. The demand for spacing has reduced to at 8 percent, 8 percent for limiting and total unmet need was 16 percent in NFHS-2. The total unmet need has reduced to 13 percent in NFHS-3 for all currently married women and the demand for limiting and spacing is 7 percent and 6 percent respectively. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services. Despite the progress, there is chunk of women who are deprived of controlling unintended and unwanted pregnancies. The present paper examines the socio-cultural and economic and demographic correlates of unmet need for contraception in India. It also examines the effect of women’s autonomy and unmet need for contraception on family size among different socio-economic groups of population. It uses data from national family health survey-3 carried out in 2005-06 and employs bi-variate techniques and multivariate techniques for analysis. The multiple regression analysis has done to seek the level and direction of relationship among various socio-economic and demographic factors. The result reveals that women with higher level of education and economic status have low level of unmet need for family planning. Women living in non-nuclear family have high unmet need for spacing and women living in nuclear family have high unmet need for limiting and family size is slightly higher of women of nuclear family. In India, the level of autonomy varies at different life point; usually women with higher age enjoy higher autonomy than their junior female member in the family. The finding shows that women with higher autonomy have large family size counter to women with low autonomy have low family size. Unmet need for family planning decrease with women’s increasing exposure to mass- media. The demographic factors like experience of child loss are directly related to family size. Women who experience higher child loss have low unmet need for spacing and limiting. Thus, It is established with the help that women’s autonomy status play substantial role in fulfilling demand of contraception for limiting and spacing which affect the family size.Keywords: family size, socio-economic correlates, unmet need for limiting, unmet need for spacing, women`s autonomy
Procedia PDF Downloads 267401 Fracture Toughness Characterizations of Single Edge Notch (SENB) Testing Using DIC System
Authors: Amr Mohamadien, Ali Imanpour, Sylvester Agbo, Nader Yoosef-Ghodsi, Samer Adeeb
Abstract:
The fracture toughness resistance curve (e.g., J-R curve and crack tip opening displacement (CTOD) or δ-R curve) is important in facilitating strain-based design and integrity assessment of oil and gas pipelines. This paper aims to present laboratory experimental data to characterize the fracture behavior of pipeline steel. The influential parameters associated with the fracture of API 5L X52 pipeline steel, including different initial crack sizes, were experimentally investigated for a single notch edge bend (SENB). A total of 9 small-scale specimens with different crack length to specimen depth ratios were conducted and tested using single edge notch bending (SENB). ASTM E1820 and BS7448 provide testing procedures to construct the fracture resistance curve (Load-CTOD, CTOD-R, or J-R) from test results. However, these procedures are limited by standard specimens’ dimensions, displacement gauges, and calibration curves. To overcome these limitations, this paper presents the use of small-scale specimens and a 3D-digital image correlation (DIC) system to extract the parameters required for fracture toughness estimation. Fracture resistance curve parameters in terms of crack mouth open displacement (CMOD), crack tip opening displacement (CTOD), and crack growth length (∆a) were carried out from test results by utilizing the DIC system, and an improved regression fitting resistance function (CTOD Vs. crack growth), or (J-integral Vs. crack growth) that is dependent on a variety of initial crack sizes was constructed and presented. The obtained results were compared to the available results of the classical physical measurement techniques, and acceptable matchings were observed. Moreover, a case study was implemented to estimate the maximum strain value that initiates the stable crack growth. This might be of interest to developing more accurate strain-based damage models. The results of laboratory testing in this study offer a valuable database to develop and validate damage models that are able to predict crack propagation of pipeline steel, accounting for the influential parameters associated with fracture toughness.Keywords: fracture toughness, crack propagation in pipeline steels, CTOD-R, strain-based damage model
Procedia PDF Downloads 63400 Association of Vulnerability and Behavioural Outcomes of FSWs Linked with TI Prevention HIV Program: An Evidence from Cross-Sectional Behavioural Study in Thane District of Maharashtra
Authors: Jayanta Bora, Sukhvinder Kaur, Ashok Agarwal, Sangeeta Kaul
Abstract:
Background: It is important for targeted interventions to consider vulnerabilities of female sex workers (FSWs) such as poverty, work-related mobility and literacy for effective human immunodeficiency virus (HIV) prevention. This paper examines the association between vulnerability and behavioural outcomes among FSWs in Thane district, Maharashtra under USAID PHFI-PIPPSE project. Methods: Data were used from the Behavioural Tracking Survey, a cross-sectional behavioural study conducted in 2015 with 503 FSWs randomly selected from 12 TI-NGOs which were functioning and providing services to FSWs in Thane district prior to April 2014 in Thane district of Maharashtra. We have created the “vulnerability index”, a composite index of literacy, factors of dependence (alternative livelihood options, current debt), and aspects of sex work (mobility and duration in sex work) as a dependent variable. The key independent measures used were program exposure to intervention, service uptake, self-confidence, and self-identity. Bi-variate and multivariate logistic regressions were used to examine the study objectives. Results: A higher proportion of FSWs who were in the age-group 18–25 years from brothel/street /home/ lodge-based were categorized as highly vulnerable to HIV risk as compared to bar-based sex worker (74.1% versus 59.8%, P,0.002); regression analysis highlighted lower odds of vulnerability among FSWs who were aware of services and visited NGO clinic for medical check-up and counselling for STI [AOR= 0.092, 95% CI 0.018-0.460; P,0.004], However, lower odds of vulnerability on confident in supporting fellow sex worker in crisis [AOR= 0.601, 95% CI 0.476-0.758; P, 0.000] and were able to turn away clients when they refused to use a condom during sex [AOR= 0.524, 95% CI 0.342-0.802; P, 0.003]. Conclusion: The results highlight that FSWs associated with TIs and getting services are less vulnerable and highly empowered. As a result of behavioural change communication and other services provided by TIs, FSWs were able to successfully negotiate about condom use with their clients and manage solidarity in the crisis situation for fellow FSWs. Therefore, it is evident from study paper that TI prevention programs may transform the lives of masses considerably and may open a window of opportunity to infuse the information and awareness about HIV risk.Keywords: female sex worker, HIV prevention, HIV service uptake, vulnerability
Procedia PDF Downloads 254399 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 330398 A Study on the Effect of the Work-Family Conflict on Work Engagement: A Mediated Moderation Model of Emotional Exhaustion and Positive Psychology Capital
Authors: Sungeun Hyun, Sooin Lee, Gyewan Moon
Abstract:
Work-Family Conflict has been an active research area for the past decades. Work-Family Conflict harms individuals and organizations, it is ultimately expected to bring the cost of losses to the company in the long run. WFC has mainly focused on effects of organizational effectiveness and job attitude such as Job Satisfaction, Organizational Commitment, and Turnover Intention variables. This study is different from consequence variable with previous research. For this purpose, we selected the positive job attitude 'Work Engagement' as a consequence of WFC. This research has its primary research purpose in identifying the negative effects of the Work-Family Conflict, and started out from the recognition of the problem that the research on the direct relationship on the influence of the WFC on Work Engagement is lacking. Based on the COR(Conservation of resource theory) and JD-R(Job Demand- Resource model), the empirical study model to examine the negative effects of WFC with Emotional Exhaustion as the link between WFC and Work Engagement was suggested and validated. Also, it was analyzed how much Positive Psychological Capital may buffer the negative effects arising from WFC within this relationship, and the Mediated Moderation model controlling the indirect effect influencing the Work Engagement by the Positive Psychological Capital mediated by the WFC and Emotional Exhaustion was verified. Data was collected by using questionnaires distributed to 500 employees engaged manufacturing, services, finance, IT industry, education services, and other sectors, of which 389 were used in the statistical analysis. The data are analyzed by statistical package, SPSS 21.0, SPSS macro and AMOS 21.0. The hierarchical regression analysis, SPSS PROCESS macro and Bootstrapping method for hypothesis testing were conducted. Results showed that all hypotheses are supported. First, WFC showed a negative effect on Work Engagement. Specifically, WIF appeared to be on more negative effects than FIW. Second, Emotional exhaustion found to mediate the relationship between WFC and Work Engagement. Third, Positive Psychological Capital showed to moderate the relationship between WFC and Emotional Exhaustion. Fourth, the effect of mediated moderation through the integration verification, Positive Psychological Capital demonstrated to buffer the relationship among WFC, Emotional Exhastion, and Work Engagement. Also, WIF showed a more negative effects than FIW through verification of all hypotheses. Finally, we discussed the theoretical and practical implications on research and management of the WFC, and proposed limitations and future research directions of research.Keywords: emotional exhaustion, positive psychological capital, work engagement, work-family conflict
Procedia PDF Downloads 222397 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 52