Search results for: linear parameter varying systems
12498 Close-Out Netting Clauses from a Comparative Perspective
Authors: Lidija Simunovic
Abstract:
A Close-out netting cause is a clause within master agreements which reduces credit risks. This clause contains the parties ' advance agreement that the occurrence of a certain event (such as the commencement of bankruptcy proceedings) will result in the termination of the contract and that their mutual claims will be calculated as a net lump-sum to be paid by one party to the other. The legal treatment of the enforceability of close-out netting clauses opens up many legal matters in comparative legal systems because it is not uniformly treated in comparative laws. Certain legal systems take a liberal approach and allow the enforcement of close-out netting clauses. Others are much stricter, and they limit or completely prohibit the enforcement of close-out netting clauses through the mandatory provisions of their national bankruptcy laws. The author analyzes the concept of close-out netting clauses in selected comparative legal systems and examines the differences in their legal treatment by using the historical, analytical, and comparative method. It results that special treatment of the close-out netting in national laws with a liberal approach is often forced by financial industry lobbies and introduced in national laws without the justified reasons. Contrary to that in legal systems with limited or prohibited approach on close-out netting the uncertain enforceability of the close-out netting clause causes potential credit risks. The detected discrepancy on the national legal treatment and national financial markets regarding close-out netting lead to the conclusion to author’s best knowledge that is not possible to use any national model of close-out netting as a role model which perfectly fits all.Keywords: close-out netting clauses, derivatives, insolvency, offsetting
Procedia PDF Downloads 14612497 Optimization of Black-Litterman Model for Portfolio Assets Allocation
Authors: A. Hidalgo, A. Desportes, E. Bonin, A. Kadaoui, T. Bouaricha
Abstract:
Present paper is concerned with portfolio management with Black-Litterman (B-L) model. Considered stocks are exclusively limited to large companies stocks on US market. Results obtained by application of the model are presented. From analysis of collected Dow Jones stock data, remarkable explicit analytical expression of optimal B-L parameter τ, which scales dispersion of normal distribution of assets mean return, is proposed in terms of standard deviation of covariance matrix. Implementation has been developed in Matlab environment to split optimization in Markovitz sense from specific elements related to B-L representation.Keywords: Black-Litterman, Markowitz, market data, portfolio manager opinion
Procedia PDF Downloads 26012496 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 33112495 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability
Procedia PDF Downloads 10712494 Contagion and Stock Interdependence in the BRIC+M Block
Authors: Christian Bucio Pacheco, Miriam Magnolia Sosa Castro, María Alejandra Cabello Rosales
Abstract:
This paper aims to analyze the contagion effect among the stock markets of the BRIC+M block (Brazil, Russia, India, China plus Mexico). The contagion effect is proved through increasing on dependence parameters during crisis periods. The dependence parameters are estimated through copula approach in a period of time from July 1997 to December 2015. During this period there are instability and calm episodes, allowing to analyze changes in the relations of dependence. Empirical results show strong evidence of time-varying dependence among the BRIC+M markets and an increasing dependence relation during global financial crisis period.Keywords: BRIC+M Block, Contagion effect, Copula, dependence
Procedia PDF Downloads 35012493 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube
Authors: Shengjun Zhang, Xu Cheng, Feng Shen
Abstract:
The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy
Procedia PDF Downloads 35112492 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment
Authors: Fatma Ünal, Hasancan Okutan
Abstract:
Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.
Procedia PDF Downloads 6912491 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate
Authors: Jenan Abu Qadourah
Abstract:
With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan
Procedia PDF Downloads 8612490 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering
Procedia PDF Downloads 24412489 Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts
Authors: Nikolay Konukhov
Abstract:
This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2Keywords: alloys, electric contacts, microelectromechanical systems (MEMS), microswitch
Procedia PDF Downloads 17612488 Vitamin D and Prevention of Rickets in Children
Authors: Mousa Saleh Daoud
Abstract:
Rickets is a condition that affects the development of bones in children. It causes soft bones, which can become bowed or curved, this bending and curvature is evident in the age of Walking. The most common cause of rickets is dietary deficiency of vitamin D or Lack of exposure to sunlight or both together. The link between vitamin D and rickets has been known for many years and is well understood by doctors and scientists. If a child does not get enough of the vitamin D, the bones cannot form hard outer shells. This is why they become soft and weak. This study was conducted on children who reviewed by our medical clinic between the years 2011-2013. The study included 400 children, aged between one and six years. 11 children had clear clinical manifestations of rickets of varying degrees and all of them due to lack of vitamin D except for one case of rickets resistant to vitamin D. 389 cases ranged between natural and deficiency in vitamin D without clinical manifestations of Rickets.Keywords: rickts, bone metabolic diseases, vitamin D, child
Procedia PDF Downloads 41712487 Powers of Class p-w A (s, t) Operators Associated with Generalized Aluthge Transformations
Authors: Mohammed Husein Mohammed Rashid
Abstract:
Let Τ = U |Τ| be a polar decomposition of a bounded linear operator T on a complex Hilbert space with ker U = ker |T|. T is said to be class p-w A(s,t) if (|T*|ᵗ|T|²ˢ|T*|ᵗ )ᵗᵖ/ˢ⁺ᵗ ≥|T*|²ᵗᵖ and |T|²ˢᵖ ≥ (|T|ˢ|T*|²ᵗ|T|ˢ)ˢᵖ/ˢ⁺ᵗ with 0Keywords: class p-w A (s, t), normaloid, isoloid, finite, orthogonality
Procedia PDF Downloads 12112486 Digital Transformation of Payment Systems Using Field Service Management
Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi
Abstract:
Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.Keywords: digital transformation, field service management, merchant support systems, payment industry
Procedia PDF Downloads 17212485 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13812484 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 16012483 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System
Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.
Abstract:
Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention
Procedia PDF Downloads 7512482 Effects of Aerodynamic on Suspended Cables Using Non-Linear Finite Element Approach
Authors: Justin Nwabanne, Sam Omenyi, Jeremiah Chukwuneke
Abstract:
This work presents structural nonlinear static analysis of a horizontal taut cable using Finite Element Analysis (FEA) method. The FEA was performed analytically to determine the tensions at each nodal point and subsequently, performed based on finite element displacement method computationally using the FEA software, ANSYS 14.0 to determine their behaviour under the influence of aerodynamic forces imposed on the cable. The convergence procedure is adapted into the method to prevent excessive displacements through the computations. The work compared the two FEA cases by examining the effectiveness of the analytical model in describing the response with few degrees of freedom and the ability of the nonlinear finite element procedure adopted to capture the complex features of cable dynamics with reference to the aerodynamic external influence. Results obtained from this work explain that the analytic FEM results without aerodynamic influence show a parabolic response with an optimum deflection at nodal points 12 and 13 with the cable weight at nodes 12 and 13 having the value -1.002936N while for the cable tension shows an optimum deflection value for nodes 12 and 13 at -189396.97kg/km. The maximum displacement for the cable system was obtained from ANSYS 14.0 as 4483.83 mm for X, Y and Z components of displacements at node number 2 while the maximum displacement obtained is 4218.75mm for all the directional components. The dynamic behaviour of a taut cable investigated has application in a typical power transmission line. Aerodynamic influences on the cables were considered using FEA approach by employing ANSYS 14.0 showed a complex modal behaviour as expected.Keywords: aerodynamics, cable tension and weight, finite element analysis, nodal, non-linear model, optimum deflection, suspended cable, transmission line
Procedia PDF Downloads 28112481 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method
Procedia PDF Downloads 32612480 Thermohydraulic Performance Comparison of Artificially Roughened Rectangular Channels
Authors: Narender Singh Thakur, Sunil Chamoli
Abstract:
The use of roughness geometry in the rectangular channel duct is an effective technique to enhance the rate of heat transfer to the working fluid. The present research concentrates on the performance comparison of a rectangular channel with different roughness geometry of the test plate. The performance enhancement is compared by considering the statistical correlations developed by the various investigators for Nusselt number and friction factor. Among all the investigated geometries multiple v-shaped rib roughened rectangular channel found thermo hydraulically better than other investigated geometries under similar current and operating conditions.Keywords: nusselt number, friction factor, thermohydraulic, performance parameter
Procedia PDF Downloads 42412479 The Determination of Operating Reserve in Small Power Systems Based on Reliability Criteria
Authors: H. Falsafi Falsafizadeh, R. Zeinali Zeinali
Abstract:
This paper focuses on determination of total Operating Reserve (OR) level, consisting of spinning and non-spinning reserves, in two small real power systems, in such a way that the system reliability indicator would comply with typical industry standards. For this purpose, the standard used by the North American Electric Reliability Corporation (NERC) – i.e., 1 day outage in 10 years or 0.1 days/year is relied. The simulation of system operation for these systems that was used for the determination of total operating reserve level was performed by industry standard production simulation software in this field, named PLEXOS. In this paper, the operating reserve which meets an annual Loss of Load Expectation (LOLE) of approximately 0.1 days per year is determined in the study year. This reserve is the minimum amount of reserve required in a power system and generally defined as a percentage of the annual peak.Keywords: frequency control, LOLE, operating reserve, system reliability
Procedia PDF Downloads 34612478 Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach
Authors: Wadea Ameen
Abstract:
Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented.Keywords: fused deposition modeling, factorial design, optimization, 3D printing
Procedia PDF Downloads 2612477 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri
Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy
Abstract:
Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin
Procedia PDF Downloads 5412476 Optimal Trajectories for Highly Automated Driving
Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller
Abstract:
In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.Keywords: trajectory planning, direct method, indirect method, highly automated driving
Procedia PDF Downloads 53512475 Characterization of an Ecological Mortar Lightweight With Polystyrene
Authors: Aidoud Assia, Bencheikh Messaouda, Boukour Salima
Abstract:
Polystyrene is often seen in the ocean and on Algerian beaches, mainly as food containers. It's one of the top 10 most common items found there. This happens because it's light and easily carried away from its original source, like packaging or transport, into the environment. Unfortunately, it's not recycled much because it's not very profitable to do so. Hence, turning this waste into a resource can turn challenges into opportunities for a territory's economic and environmental development, which is the focus of this study. the goal is to analyze the physical and mechanical properties of a new type of mortar made from dune sand mixed with recycled polystyrene. it also aim to assess its potential for use in various construction applications. The mixtures were prepared by replacing portions of dune sand with polystyrene waste at varying volumes (10%, 20%, and 30%), while keeping the amount of cement constant. The results indicate a noticeable impact on both the physical and mechanical properties because of incorporating polystyrene waste.Keywords: polystyrène, eco-mortier, sable de dune, résistance
Procedia PDF Downloads 5712474 Grain and Grain Boundary Behavior of Sm Substituted Barium Titanate Based Ceramics
Authors: Parveen Kumar, J. K. Juneja, Chandra Prakash, K. K. Raina
Abstract:
A series of polycrystalline ferroelectric ceramics with compositional formula Ba0.80-xSmxPb0.20Ti0.90Zr0.10O3 with x varying from 0 to 0.01 in the steps of 0.0025 has been prepared by solid state reaction method. The dielectric constant and tangent loss was measured as a function of frequency from 100Hz to 1MHz at different temperatures (200-500oC). The electrical behavior was then investigated using complex impedance spectroscopy (CIS) technique. From the CIS study, it has been found that there is a contribution of both grain and grain boundary in the electrical behavior of such ceramics. Grain and grain boundary resistivity and capacitance were calculated at different temperature using CIS technique. The present paper is about the discussion of grain and grain boundary contribution towards the electrical properties of Sm modified BaTiO3 based ceramics at high temperature.Keywords: grain, grain boundary, impedance, dielectric
Procedia PDF Downloads 40312473 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water
Authors: M. T. Amina, A. A. Alazba, U. Manzoor
Abstract:
Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.Keywords: efficiency, microbial, SODIS, SOCODIS, weathers
Procedia PDF Downloads 26512472 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow
Procedia PDF Downloads 38612471 Mobile Agent Security Using Reference Monitor Based Security Framework
Authors: Sandhya Armoogum
Abstract:
In distributed systems and in open systems such as the Internet, often mobile code has to run on unknown and potentially hostile hosts. Mobile code such as a mobile agent is vulnerable when executing on remote hosts. The mobile agent may be subjected to various attacks such as tampering, inspection, and replay attack by a malicious host. Much research has been done to provide solutions for various security problems, such as authentication of mobile agent and hosts, integrity and confidentiality of the data carried by the mobile agent. Many of such proposed solutions in literature are not suitable for open systems whereby the mobile code arrives and executes on a host which is not known and trusted by the mobile agent owner. In this paper, we propose the adoption of the reference monitor by hosts in an open system for providing trust and security for mobile code execution. A secure protocol for the distribution of the reference monitor entity is described. This reference monitor entity on the remote host may also provide several security services such as authentication and integrity to the mobile code.Keywords: security, mobile agents, reference monitor, trust
Procedia PDF Downloads 44312470 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves
Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau
Abstract:
Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure
Procedia PDF Downloads 49412469 A Review of Attractor Neural Networks and Their Use in Cognitive Science
Authors: Makenzy Lee Gilbert
Abstract:
This literature review explores the role of attractor neural networks (ANNs) in modeling psychological processes in artificial and biological systems. By synthesizing research from dynamical systems theory, psychology, and computational neuroscience, the review provides an overview of the current understanding of ANN function in memory formation, reinforcement, retrieval, and forgetting. Key mathematical foundations, including dynamical systems theory and energy functions, are discussed to explain the behavior and stability of these networks. The review also examines empirical applications of ANNs in cognitive processes such as semantic memory and episodic recall, as well as highlighting the hippocampus's role in pattern separation and completion. The review addresses challenges like catastrophic forgetting and noise effects on memory retrieval. By identifying gaps between theoretical models and empirical findings, it highlights the interdisciplinary nature of ANN research and suggests future exploration areas.Keywords: attractor neural networks, connectionism, computational modeling, cognitive neuroscience
Procedia PDF Downloads 33