Search results for: food shortage
1139 Effect of Sodium Chloride Replacement with Potassium Chloride on Qualities of Longan Seasoning Powder
Authors: Narin Charoenphun, Praopen Rattanadee, Chaiporn Phaephiromrat
Abstract:
One of the most important intricacies of cooking is seasoning which is the process of adding salt, herbs, or spices to food to enhance the flavor. Sodium chloride (NaCl) was added in seasoning powder for taste-improving and shelf life of products. However, the raised blood pressure caused by eating too much NaCl may damage the arteries leading to the heart. Interestingly, NaCl replacement with other substance is essential for consumer. The objective of this study was to investigate the effects of NaCl replacement with potassium chloride (KCl) on the sensory characteristics and physiochemical properties of longan seasoning powder. Five longan seasoning Powder were replaced sodium chloride with KCl at 0, 25, 50 75 and 100%. Mixture design with 2 replications was performed. Sensory characteristics on overall flavor, saltiness, sweetness, bitterness and overall liking were investigated using 12 descriptive trained panelists. Results revealed that NaCl and KCl had effects on saltiness, bitterness and overall liking. As the level of KCl substituted increased, the overall flavor and sweetness of powdered seasoning from longan were not significantly (p < 0.05). This resulted in the decrease of overall liking of the products. In addition, increasing the level of KCl substituted resulted in the drop of saltiness but out of bitterness of the products. Saltiness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Bitterness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Moreover, consumer acceptance test was conducted (n=100). In conclusion, the optimum formulation contained of 32.0% longan powder, 28.0% sugar, 15.0% NaCl, 5% KCl, 16.0% pork powder, 3.0% pepper powder, and 3.0% garlic powder that would meet acceptability scores of at least 7 or like moderately.Keywords: longan, seasoning, NaCl, KCl
Procedia PDF Downloads 2531138 Determination of Proximate, Mineral, and Heavy Metal Contents of Fish from the Lower River Niger at Agenebode, Edo State, Nigeria
Authors: Agbugui M. O., Inobeme A.
Abstract:
Fish constitutes a vital component of human diets due to their rich nutritional compositions. They serve as a remarkable source of proteins, vitamins, and fatty acids, which are indispensable for the effective growth and development of humans. The need to explore the nutritional compositions of various species of fish in different water bodies becomes paramount. Presently, consumer concern is not just on food's nutritional value but also on the safety level. Environmental contamination by heavy metals has become an issue of pressing concern in recent times. Heavy metals, due to their ubiquitous nature, are found in various water bodies as they are released from various anthropogenic activities. This work investigated the proximate compositions, mineral contents, and heavy metals concentrations of four different species of fish (P. annectens, L. niloticus, G. niloticus, and H. niloticus) collected from the lower Niger at Agenebode using standard procedures. The highest protein contents were in Gymnarchus niloticus (37.32%), while the least was in Heterotis niloticus (20.41%). Protopterus annectens had the highest carbohydrate content (34.55%), while Heterotis niloticus had the least (12.24%). The highest lipid content (14.41%) was in Gymnarchus niloticus. The highest concentration of potassium was 21.00 ppm. The concentrations of heavy metals in ppm ranged from 0.01 – 1.4 (Cd), 0.07 – 2.89 (Pb), 0.02 – 16.4 (Hg), 0.88 – 5.1 (Cu) and 1.2 – 8.23 (Zn). The concentrations of Hg, Cd and Pb in some of the samples investigated were higher than the permissible limits based on international standards. There is a pressing need for further study focusing on various species of animals and plants in the area due to the alarming contents of these metals; remedial measures could also be ensured for safety.Keywords: trace metals, nutritional value, human health, crude protein, lipid content
Procedia PDF Downloads 951137 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese
Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi
Abstract:
This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese
Procedia PDF Downloads 911136 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer
Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell
Abstract:
Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers
Procedia PDF Downloads 1091135 The Study of Customer Satisfaction towards the Services of Baan Bueng Resort in Nongprue Subdistrict, Baanlamung District, Chonburi Province
Authors: Witthaya Mekhum, Jinjutha Srihera
Abstract:
This research aims to study customer satisfaction towards the services of Baan Bueng Resort in Nongprue Subdistrict, Baanlamung District, Chonburi Province. 108 sample were drawn by random sampling from Thai and foreign tourists at Baan Bueng Resort. Questionnaires were distributed. Data were analyzed using frequency, percentage, mean (X) and standard deviation (S.D.). The tool used in this research was questionnaire on satisfaction towards the services of Baan Bueng Resort in Nongprue Subdistrict, Baanlamung District, Chonburi Province. The questionnaire can be divided into 3 parts; i.e. Part 1: General information i.e. gender, age, educational level, occupation, income, and nationality, Part 2: Customer satisfaction towards the services of Baan Bueng Resort; and Part 3: Suggestions of respondents. It can be concluded that most of the respondents are male, aged between 25 – 35 years old with bachelor degree. Most of them are private company employees with income 10,000–20,000 Baht per month. The majority of customers are satisfied with the services at Baan Beung Resort. Overall satisfaction is at good level. Considering each item, the item with the highest satisfaction level is personality and manner of employees and promptness and accuracy of cashier staff. Overall satisfaction towards the cleanliness of the rooms is at very good level. When considering each item, the item with the highest satisfaction level is that the guest room is cleaned everyday, while the satisfaction towards the quality of food and beverages at Baan Bueng Resort in Nongprue Subdistrict, Baanlamung District, Chonburi Province is at very good level. The item with the highest satisfaction is hotel facilities.Keywords: satisfaction study, service, hotel, customer
Procedia PDF Downloads 3311134 Production of Cellulose Nanowhiskers from Red Algae Waste and Its Application in Polymer Composite Development
Authors: Z. Kassab, A. Aboulkas, A. Barakat, M. El Achaby
Abstract:
The red algae are available enormously around the world and their exploitation for the production of agar product has become as an important industry in recent years. However, this industrial processing of red algae generated a large quantity of solid fibrous wastes, which constitute a source of a serious environmental problem. For this reason, the exploitation of this solid waste would help to i) produce new value-added materials and ii) to improve waste disposal from environment. In fact, this solid waste can be fully utilized for the production of cellulose microfibers and nanocrystals because it consists of large amount of cellulose component. For this purpose, the red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments with controlled conditions, in order to obtain pure cellulose microfibers and cellulose nanocrystals. The raw product and the as-extracted cellulosic materials were successively characterized using serval analysis techniques, including elemental analysis, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and transmission electron microscopy. As an application, the as extracted cellulose nanocrystals were used as nanofillers for the production of polymer-based composite films with improved thermal and tensile properties. In these composite materials, the adhesion properties and the large number of functional groups that are presented in the CNC’s surface and the macromolecular chains of the polymer matrix are exploited to improve the interfacial interactions between the both phases, improving the final properties. Consequently, the high performances of these composite materials can be expected to have potential in packaging material applications.Keywords: cellulose nanowhiskers, food packaging, polymer composites, red algae waste
Procedia PDF Downloads 2281133 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics
Authors: Bhupinder Kaur, P. P. Srivastav
Abstract:
The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.Keywords: cryogenic grinding, morphological, mineral composition, SEM
Procedia PDF Downloads 2331132 Chemical Composition, in vitro Antioxidant Activity and Gas Chromatography–Mass Spectrometry Analysis of Essential Oil and Extracts of Ruta chalpensis aerial Parts Growing in Tunisian Sahara
Authors: Samir Falhi, Neji Gharsallah, Adel Kadri
Abstract:
Ruta chalpensis L. is a medicinal plant in the family of Rutaceae, has been used as an important traditional in the Mediterranean basin in the treatment of many diseases. The current study was devoted to investigate and evaluate the chemical composition, total phenolic, flavonoid and tannin contents, and in vitro antioxidant activities of ethyl acetate, ethanol and hydroalcoholic extracts and essential oil from the aerial parts of Ruta chalpensis from Tunisian Sahara. Total phenolic, flavonoid and tannin contents of extracts ranged from 40.39 ± 1.87 to 75.13 ± 1.22 mg of GAE/g, from 22.62 ± 1.55 to 27.51 ± 1.04 mg of QE/g, and from 5.56 ± 1.32 to 10.89 ± 1.10 mg of CE/g respectively. Results showed that the highest antioxidant activities was determined for ethanol extract with IC50 value of 26.23 ± 0.91 µg/mL for 2,2-diphenyl-1-picrylhydrazyl assay, and for hydroalcoholic extract with EC50 value of 412.95±6.57 µg/mL and 105.52±2.45 mg of α-tocopherol/g for ferric reducing antioxidant power and total antioxidant capacity assays, respectively. Furthermore, Gas Chromatography–Mass Spectrometry (GC-MS) analysis of essential oil led to identification of 20 compounds representing 98.96 % of the total composition. The major components of essential oil were 2-undecanone (39.13%), 2-nonanone (25.04), 1-nonene (13.81), and α-limonene (7.72). Spectral data of Fourier-transform infrared spectroscopy analysis (FT-IR) of extracts revealed the presence of functional groups such as C= O, C─O, ─OH, and C─H, which confirmed its richness on polyphenols and biological active functional groups. These results showed that Ruta chalpensis could be a potential natural source of antioxidants that can be used in food and nutraceutical applications.Keywords: antioxidant, FT-IR analysis, GC-MS analysis, phytochemicals contents, Ruta chalpensis
Procedia PDF Downloads 1471131 Treated Wastewater Reuse in Algeria: Overview, Mobilization Potential and Challenges
Authors: Dairi Sabri, Mrad Dounia, Djebbar Yassine, Abida Habib
Abstract:
Food security, which may be ensured by important agricultural production, needs huge amounts of water for irrigation. Recognizing this, the Algerian government made enormous efforts to mobilize water resources. Every drop of water collected, regardless of its origin, is needed to strengthen agricultural production. The present irrigated area in Algeria is about 1 million hectares while the potential agricultural area all over the country exceeds 9 million ha. This clearly shows the need for non-conventional water resources in Algeria, especially treated wastewater reuse. The use of treated wastewater in agricultural irrigation is still at the experimental stage in Algeria. While 20 million hectares worldwide are irrigated with treated wastewater, only 2300 hectares in Algeria are irrigated on an experimental basis in the regions of Setif, Constantine, Mila Telemcen, Tougourt and Boumerdès. The volume of wastewater discharged nationwide is estimated to be around 750 million cubic meters and is expected to exceed 1.5 billion m3 in 2020. An ambitious program of providing treatment facilities has been initiated in this direction to increase the treatment capacity to 2.5 million m3 per day in 2030. In order to optimize the use of this resource, specific research actions interested in defining treated wastewater reuse opportunities and standards are undertaken. The objective of this study is basically to examine the different components of treated wastewater reuse, including standards, treatment processes, agricultural opportunities and potentials as well as technical and economic aspects governing the feasibility of this technology in Algeria based on Geographic Information System (GIS).Keywords: wastewater reuse, integrated management, irrigation, GIS
Procedia PDF Downloads 3011130 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat
Authors: Chika C. Ogueke, Ijeoma M. Agunwah
Abstract:
The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates
Procedia PDF Downloads 2941129 Application of Aquatic Plants for the Remediation of Organochlorine Pesticides from Keenjhar Lake
Authors: Soomal Hamza, Uzma Imran
Abstract:
Organochlorine pesticides bio-accumulate into the fat of fish, birds, and animals through which it enters the human food cycle. Due to their persistence and stability in the environment, many health impacts are associated with them, most of which are carcinogenic in nature. In this study, the level of organochlorine pesticides has been detected in Keenjhar Lake and remediated using Rhizoremediation technique. 14 OC pesticides namely, Aldrin, Deldrin, Heptachlor, Heptachlor epoxide, Endrin, Endosulfun I and II, DDT, DDE, DDD, Alpha, Beta, Gamma BHC and two plants namely, Water Hyacinth and Slvinia Molesta were used in the system using pot experiment which processed for 11 days. A consortium was inoculated in both plants to increase its efficiency. Water samples were processed using liquide-liquid extraction. Sediments and roots samples were processed using Soxhlet method followed by clean-up and Gas Chromatography. Delta-BHC was the predominantly found in all samples with mean concentration (ppb) and standard deviation of 0.02 ± 0.14, 0.52 ± 0.68, 0.61 ± 0.06, in Water, Sediments and Roots samples respectively. The highest levels were of Endosulfan II in the samples of water, sediments and roots. Water Hyacinth proved to be better bioaccumulaor as compared to Silvinia Molesta. The pattern of compounds reduction rate by the end of experiment was Delta-BHC>DDD > Alpha-BHC > DDT> Heptachlor> H.Epoxide> Deldrin> Aldrin> Endrin> DDE> Endosulfun I > Endosulfun II. Not much significant difference was observed between the pots with the consortium and pots without the consortium addition. Phytoremediation is a promising technique, but more studies are required to assess the bioremediation potential of different aquatic plants and plant-endophyte relationship.Keywords: aquatic plant, bio remediation, gas chromatography, liquid liquid extraction
Procedia PDF Downloads 1491128 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production
Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen
Abstract:
In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.Keywords: carrageenan, extraction, protein, seaweed
Procedia PDF Downloads 2841127 The Study of Spray Drying Process for Skimmed Coconut Milk
Authors: Jaruwan Duangchuen, Siwalak Pathaveerat
Abstract:
Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin
Procedia PDF Downloads 3331126 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves
Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj
Abstract:
In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects
Procedia PDF Downloads 4101125 Control of Listeria monocytogenes ATCC7644 in Fresh Tomato and Carrot with Zinc Oxide Nanoparticles
Authors: Oluwatosin A. Ijabadeniyi, Faith Semwayo
Abstract:
Preference for consumption of fresh and minimally processed fruits and vegetables continues to be on the upward trend however food-borne outbreaks related to them have also been on the increase. In this study the effect of zinc oxide nanoparticles on controlling Listeria monocytogenes ATCC 7644 in tomatoes and carrots during storage was investigated. Nutrient broth was inoculated with Listeria monocytogenes ATCC 7644 and thereafter inoculated with 0.3mg/ml nano-zinc oxide solution and 1.2mg/ml nano-zinc oxide solution and 200ppm chlorine was used as a control. Whole tomatoes and carrots were also inoculated with Listeria monocytogenes ATCC 7644 after which they were dipped into zinc oxide nanoparticle solutions and chlorine solutions. 1.2 mg/ml had a 2.40 log reduction; 0.3mg/ml nano-zinc oxide solution had a log reduction of 2.15 in the broth solution. There was however a 4.89 log and 4.46 reduction by 200 ppm chlorine in tomato and carrot respectively. Control with 0.3 mg/ml zinc oxide nanoparticles resulted in a log reduction of 5.19 in tomato and 3.66 in carrots. 1.2 mg/ml nanozinc oxide solution resulted in a 5.53 log reduction in tomato and a 4.44 log reduction in carrots. A combination of 50ppm Chlorine and 0.3 mg/ml nanozinc oxide was also used and resulted in log reductions of 5.76 and 4.84 respectively in tomatoes and carrots. Treatments were more effective in tomatoes than in carrots and the combination of 50ppm Chlorine and 0.3 mg/ml ZnO resulted in the highest log reductions in both vegetables. Statistical analysis however showed that there was no significant difference between treatments with Chlorine and nanoparticle solutions. This study therefore indicates that zinc oxide nanoparticles have the potential for use as a control agent in the fresh produce industry.Keywords: Listeria monocytogenes, nanoparticles, tomato, carrot
Procedia PDF Downloads 5011124 Understanding the Endogenous Impact of Tropical Cyclones Floods and Sustainable Landscape Management Innovations on Farm Productivity in Malawi
Authors: Innocent Pangapanga, Eric Mungatana
Abstract:
Tropical cyclones–related floods (TCRFs) in Malawi have devastating effects on smallholder agriculture, thereby threatening the food security agenda, which is already constrained by poor agricultural innovations, low use of improved varieties, and unaffordable inorganic fertilizers, and fragmenting landholding sizes. Accordingly, households have engineered and indigenously implemented sustainable landscape management (SLM) innovations to contain the adverse effects of TCRFs on farm productivity. This study, therefore, interrogated the efficacy of SLM adoption on farm productivity under varying TCRFs, while controlling for the potential selection bias and unobservable heterogeneity through the application of the Endogenous Switching Regression Model. In this study, we further investigated factors driving SLM adoption. Substantively, we found TCRFs reducing farm productivity by 31 percent, on the one hand, and influencing the adoption of SLM innovations by 27 percent, on the other hand. The study also observed that households that interacted SLM with TCRFs were more likely to enhance farm productivity by 24 percent than their counterparts. Interestingly, the study results further demonstrated that multiple adoptions of SLM-related innovations, including intercropping, agroforestry, and organic manure, enhanced farm productivity by 126 percent, suggesting promoting SLM adoption as a package to appropriately inform existing sustainable development goals’ agricultural productivity initiatives under intensifying TCRFs in the country.Keywords: tropical cyclones–related floods, sustainable landscape management innovations, farm productivity, endogeneity, endogenous switching regression model, panel data, smallholder agriculture
Procedia PDF Downloads 1161123 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw
Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor
Abstract:
As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition
Procedia PDF Downloads 961122 Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan
Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh
Abstract:
The parrot (Rose Ringed) commonly known as tota, belongs to the order ‘psiitaciformes’ and family ‘Psittacidea’, Four species of parakeet inhabits tropical and subtropical regions of Pakistan mostly adopted parks in cities deciduous woodlands, light secondary jungles, semidesert, and scrubland and in orchards and cultivated farmlands. They are mostly feed on citrus fruits, guava, mango, green unripen seed and almond nuts as well as bud and flowers etc. the core aim of the present study was to investigate the Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan. Sampling was obtained from various adjoining areas of District Mirpurkhas by Non-Random Method, which was conducted from June to Nov 2017. During the present study, a total no: of 84 specimens were collected from different localities of City Mirpurkhas (42.8%) were male ♂ and (57.1%) were female ♀. Maximum population density of Psittaculla Krameri Borealis (50.0%) was collected from Guava (Psidium Guajava) Orchards, Mango (Mangifera Indica) orchard (41.6%), chekoo (Manilkara Zapota) orchard (5.9%) and the Minimum No: of Psittaculla krameri Borealis (2.3%) collected Date (Phoenix Dactylifera) orchard. It was observed that Psittaculla krameri Borealis were highly consumed Guava (Psidium Guajava) and the minimum consume food was Date (Phoenix Dactylifera).Keywords: district Mirpur Khas Sindh Pakistan, feeding, habitat, parrot (ringed necked parakeet)
Procedia PDF Downloads 1811121 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 841120 A Comprehensive Analysis of the Rheological Properties of Polymer Hydrogels in Order to Explore Their Potential for Practical Utilization in Industries
Authors: Raana Babadi Fathipour
Abstract:
Hydrogels are three-dimensional structures formed by the interweaving of polymeric materials, possessing the remarkable ability to imbibe copious amounts of water. Numerous methodologies have been devised for examining and understanding the properties of these synthesized gels. Amongst them, spectroscopic techniques such as ultraviolet/visible (UV/Vis) and Fourier-transform infrared (FTIR) spectroscopy offer a glimpse into molecular and atomic aspects. Additionally, diffraction methods like X-ray diffraction (XRD) enable one to measure crystallinity within the gel's structure, while microscopy tools encompassing scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide insights into surface texture and morphology. Furthermore, rheology serves as an invaluable tool for unraveling the viscoelastic behavior inherent in hydrogels—a parameter crucial not only to numerous industries, including pharmaceuticals, cosmetics, food processing, agriculture and water treatment, but also pivotal to related fields of research. Likewise, the ultimate configuration of the product is contingent upon its characterization at a microscopic scale in order to comprehend the intricacies of the hydrogel network's structure and interaction dynamics in response to external forces. Within this present scrutiny, our attention has been devoted to unraveling the intricate rheological tendencies exhibited by materials founded on synthetic, natural, and semi-synthetic hydrogels. We also explore their practical utilization within various facets of everyday life from an industrial perspective.Keywords: rheology, hydrogels characterization, viscoelastic behavior, application
Procedia PDF Downloads 501119 A Review on the Importance of Nursing Approaches in Nutrition of Children with Cancer
Authors: Ş. Çiftcioğlu, E. Efe
Abstract:
In recent years, cancer has been at the top of diseases that cause death in children. Adequate and balanced nutrition plays an important role in the treatment of cancer. Cancer and cancer treatment is affecting food intake, absorption and metabolism, causing nutritional disorders. Appropriate nutrition is very important for the cancerous child to feel well before, during and after the treatment. There are various difficulties in feeding children with cancer. These are the cancer-related factors. Other factors are environmental and behavioral. As health professionals who spend more time with children in the hospital, nurses should be able to support the children on nutrition and help them to have balanced nutrition. This study aimed to evaluate the importance of nursing approaches in the nutrition of children with cancer. This article is planned as a review article by searching the literature on this field. Anorexia may develop due to psychogenic causes or chemotherapeutic agents or accompanying infections and nutrient uptake may be reduced. In addition, stomatitis, mucositis, taste and odor changes in the mouth, the feeling of nausea, vomiting and diarrhea can also reduce oral intake and result in significant losses in the energy deficit. In assessing the nutritional status of children with cancer, determining weight loss and good nutrition is essential anamnesis of a child. Some anthropometric measurements and biochemical tests should be used to evaluate the nutrition of the child. The nutritional status of pediatric cancer patients has been studied for a long time and malnutrition, in particular under nutrition, in this population has long been recognized. Yet, its management remains variable with many malnourished children going unrecognized and consequently untreated. Nutritional support is important to pediatric cancer patients and should be integrated into the overall treatment of these children.Keywords: cancer treatment, children, complication, nutrition, nursing approaches
Procedia PDF Downloads 2201118 Species Diversity of Coleoptera (Insecta: Coleoptera) Damaging Saxaul (Chenopodiáceae: Haloxylon spp.) in the Deserts Area of South-East Kazakhstan
Authors: B. Mombayeva
Abstract:
In the deserts area of south east of Kazakhstan, 16 species of Coleoptera from 6 families and 12 genus of insects damaging Saxaul have been revealed. The vast number of species belong to the Cerambycidae familyCapricorn Beetle (4 species) and Hemlock Borer of Melanophila genus and 3 species of weevils and flea-beetles, and 1 species of coctsinelids and carrion beetle. Some of them cause appreciable harm, and sometimes very heavy damageto saxaul. According to food specialization they are divided into polyphages and - oligophages. According to the confinement to saxaul parts, registered beetles insects mainly feed on generative parts (11 species) and leaves (5 species). 9 species from them feed on roots, leaves and generative organs. They are scarablike beetle’s larvae (Apatophysismongolica Semenov., Tursmenigenavarentzovi Melg., Phytoecia (Opsilla) coerulescens Scopoli., Apatophysismongolica Semenov.), Jewel beetles (Julodis (s. Str.) Variolaris (Pallas), Sphenoptera (s. Str.) cuprina Motschulsky, S. (s. str.) exarata (Fischer), SphenopterapotaniniJak.) and some weevil (Barisartemisiae Hbst.). The larvae eat the roots and the imago - generative organs. Their feeding noticeably has its effect on the condition of saxaul. Beetles also slightlygnaw vegetative organs of plants. Among the harmful species the desert Capricorn Beetle Julodisvariolaris (Pallas) deserved attention. Its larvae live in the soil and cause harm to the roots of Saxaul and other pasture plants. In addition, the larvae of Sphenopterapotanini, S.punctatissima colonize the roots, trunk and branches of Haloxylon. In the spring Saxaul flowers are much damaged by Ladybeetle Bulaealichatchovi.Keywords: saxaul, coleoptera, insecta, haloxylon
Procedia PDF Downloads 2561117 Biotechnological Recycling of Apple By-Products: A Reservoir Model to Produce a Dietary Supplement Fortified with Biogenic Phenolic Compounds
Authors: Ali Zein Aalabiden Tlais, Alessio Da Ros, Pasquale Filannino, Olimpia Vincentini, Marco Gobbetti, Raffaella Di Cagno
Abstract:
This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, antioxidant activity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the Liquid chromatography-mass spectrometry validated method. The accumulation of phenolic acid derivatives highlighted microbial metabolism during AP fermentation. Bio-converted phenolic compounds were likely responsible for the increased antioxidant activity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells and preserved the integrity of tight junctions. An alternative and suitable model for food by-products recycling to manufacture a dietary supplement fortified with biogenic compounds was proposed. Highlighting the microbial metabolism of several phenolic compounds, undoubted additional value to such downstream wastes was created.Keywords: apple by-products, antioxidant, fermentation, phenolic compounds
Procedia PDF Downloads 1411116 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology
Authors: Sulhee Lee, Geon Kim, Young-Seo Park
Abstract:
Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization
Procedia PDF Downloads 4361115 Encapsulation of Probiotic Bacteria in Complex Coacervates
Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis
Abstract:
Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.Keywords: probiotic, complex coacervation, whey, encapsulation
Procedia PDF Downloads 2971114 Advances in Sesame Molecular Breeding: A Comprehensive Review
Authors: Micheale Yifter Weldemichael
Abstract:
Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering
Procedia PDF Downloads 351113 Potential of Pyrolytic Tire Char Use in Agriculture
Authors: M. L. Moyo
Abstract:
Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.
Procedia PDF Downloads 1221112 The Limits of Charity: Advancing a Rights-based Justice Model to Remedy Poverty and Hunger
Authors: Tracy Smith-Carrier
Abstract:
In 1995, the World Health Organization declared that poverty was the biggest killer and the greatest cause of suffering in the world. Income is certainly a key social determinant of health, the lack of which causes innumerable health and mental health conditions. In seeking to provide relief from financial hardship for residents within their populace, states in the Global North have largely turned to the non-profit and charitable sector. The stigma and shame of accessing charity is a significant barrier for many, but what is more problematic is that the embrace of the charitable model has let governments off the hook from responding to their international human rights obligations. Although states are signatories to various human rights treaties and conventions internationally, many of these laws have not been implemented domestically. This presentation explores the limits of the charitable model in addressing poverty in countries of the Global North. Unlike in the ages passed, when poverty was thought to be an individual problem, we now know that poverty is largely systemic in nature. In this presentation, we will identify the structural determinants of poverty, outline why people are reticent to access charitable programs and services and how income security is reproduced through the charitable model, and discuss evidence-informed solutions, such as a basic income guarantee, to move beyond the charitable model in favour of a rights-based justice model. To move beyond charity, we must demand that governments recognize our fundamental human rights and address poverty and hunger using a justice model based on substantive human rights.Keywords: basic income, charity, poverty, income security, hunger, food security, social justice, human rights
Procedia PDF Downloads 1171111 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery
Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang
Abstract:
Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.Keywords: solar, pothothermal, membrane, MWCNT
Procedia PDF Downloads 991110 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment
Authors: N. Hedayat, E. Karamifar
Abstract:
Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.Keywords: agricultural sustainability, environmental integrity, pollution, eco-system
Procedia PDF Downloads 401