Search results for: peak detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4752

Search results for: peak detection

1902 Variation In Gastrocnemius and Hamstring Muscle Activity During Peak Knee Flexor Torque After Anterior Cruciate Ligament Reconstruction with Hamstring Graft

Authors: Luna Sequier, Florian Forelli, Maude Traulle, Amaury Vandebrouck, Pascal Duffiet, Louis Ratte, Jean Mazeas

Abstract:

The study's objective is to compare the muscular activity of the flexor knee muscle in patients who underwent an anterior cruciate ligament reconstruction with hamstring autograft and the individuals who have not undergone surgery. Methods: The participants were divided into two groups: a healthy group and an experimental group who had undergone an anterior cruciate ligament reconstruction with a hamstring graft. All participants had to perform a knee flexion strength test on an isokinetic dynamometer. The medial Gastrocnemius, lateral Gastrocnemius, Biceps femoris, and medial Hamstring muscle activity were measured during this test. Each group’s mean muscle activity was tested with statistical analysis, and a muscle activity ratio of gastrocnemius and hamstring muscles was calculated Results: The results showed a significant difference in activity of the medial gastrocnemius (p = 0,004901), the biceps femoris (p = 5,394.10-6), and the semitendinosus muscles (p = 1,822.10-6), with a higher Biceps femoris and Semitendinosus activity for the experimental group. It is however noticeable that inter-subject differences were important. Conclusion: This study has shown a difference in the gastrocnemius and hamstring muscle activity between patients who underwent an anterior cruciate ligament reconstruction surgery and healthy participants. With further results, this could show a modification of muscle activity patterns after surgery which could lead to compensatory behaviors at a return to sport and eventually explain a higher injury risk for our patients.

Keywords: anterior cruciate ligament, electromyography, muscle activity, physiotherapy

Procedia PDF Downloads 241
1901 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material

Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel

Abstract:

In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.

Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient

Procedia PDF Downloads 432
1900 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 543
1899 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter

Authors: Reji Thankachan, Varsha PS

Abstract:

Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.

Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF

Procedia PDF Downloads 498
1898 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
1897 Application All Digits Number Benford Law in Financial Statement

Authors: Teguh Sugiarto

Abstract:

Background: The research aims to explore if there is fraud in a financial statement, use the Act stated that Benford's distribution all digits must compare the number will follow the trend of lower number. Research methods: This research uses all the analysis number being in Benford's law. After receiving the results of the analysis of all the digits, the author makes a distinction between implementation using the scale above and below 5%, the rate of occurrence of difference. With the number which have differences in the range of 5%, then can do the follow-up and the detection of the onset of fraud against the financial statements. The findings: From the research that has been done can be drawn the conclusion that the average of all numbers appear in the financial statements, and compare the rates of occurrence of numbers according to the characteristics of Benford's law. About the existence of errors and fraud in the financial statements of PT medco Energy Tbk did not occur. Conclusions: The study concludes that Benford's law can serve as indicator tool in detecting the possibility of in financial statements to case studies of PT Medco Energy Tbk for the fiscal year 2000-2010.

Keywords: Benford law, first digits, all digits number Benford law, financial statement

Procedia PDF Downloads 239
1896 A Review on the Hydrologic and Hydraulic Performances in Low Impact Development-Best Management Practices Treatment Train

Authors: Fatin Khalida Abdul Khadir, Husna Takaijudin

Abstract:

Bioretention system is one of the alternatives to approach the conventional stormwater management, low impact development (LID) strategy for best management practices (BMPs). Incorporating both filtration and infiltration, initial research on bioretention systems has shown that this practice extensively decreases runoff volumes and peak flows. The LID-BMP treatment train is one of the latest LID-BMPs for stormwater treatments in urbanized watersheds. The treatment train is developed to overcome the drawbacks that arise from conventional LID-BMPs and aims to enhance the performance of the existing practices. In addition, it is also used to improve treatments in both water quality and water quantity controls as well as maintaining the natural hydrology of an area despite the current massive developments. The objective of this paper is to review the effectiveness of the conventional LID-BMPS on hydrologic and hydraulic performances through column studies in different configurations. The previous studies on the applications of LID-BMP treatment train that were developed to overcome the drawbacks of conventional LID-BMPs are reviewed and use as the guidelines for implementing this system in Universiti Teknologi Petronas (UTP) and elsewhere. The reviews on the analysis conducted for hydrologic and hydraulic performances using the artificial neural network (ANN) model are done in order to be utilized in this study. In this study, the role of the LID-BMP treatment train is tested by arranging bioretention cells in series in order to be implemented for controlling floods that occurred currently and in the future when the construction of the new buildings in UTP completed. A summary of the research findings on the performances of the system is provided which includes the proposed modifications on the designs.

Keywords: bioretention system, LID-BMP treatment train, hydrological and hydraulic performance, ANN analysis

Procedia PDF Downloads 118
1895 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 255
1894 Heavy Metal Concentrations in Sediments of Sta. Maria River, Laguna

Authors: Francis Angelo A. Sta. Ana

Abstract:

Heavy metal pollutants are a major environmental concern in built-up areas in the Philippines. It causes negative effects on aquatic organisms and human health. Heavy metals concentrations of chromium, mercury, lead, copper, arsenic, zinc, cadmium, and nickel were investigated in Sta. Maria river, in Laguna. A total of 16 sediment samples were collected from the river at four stations. Atomic absorption spectroscopy (AAS) was used for element detection. It is found that copper is associated with chromium based on statistical analysis using principal component analysis (PCA). Conduct of Sediment Quality Guideline (SQG) revealed that chromium has high toxicity due to values higher than Sediment Quality Guidelines Probable Effect Level (SQG’s PEL). Copper, Nickel, and Pb fall on average toxicity while others are below PEL and effect range low (ERL).

Keywords: heavy metals, pollutants, sediment quality guidelines, atomic absorption spectroscopy

Procedia PDF Downloads 147
1893 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 269
1892 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: correlation filter, long-term tracking, random fern, real-time tracking

Procedia PDF Downloads 139
1891 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 73
1890 Analysis and Mapping of Climate and Spring Yield in Tanahun District, Nepal

Authors: Resham Lal Phuldel

Abstract:

This study based on a bilateral development cooperation project funded by the governments of Nepal and Finland. The first phase of the project has been completed in August 2012 and the phase II started in September 2013 and will end September 2018. The project strengthens the capacity of local governments in 14 districts to deliver services in water supply, sanitation and hygiene in Western development region and in Mid-Western development region of Nepal. In recent days, several spring sources have been dried out or slowly decreasing its yield across the country due to changing character of rainfall, increasing evaporative losses and some other manmade causes such as land use change, infrastructure development work etc. To sustain the hilly communities, the sources have to be able to provide sufficient water to serve the population, either on its own or in conjunction with other sources. Phase III have measured all water sources in Tanahu district in 2004 and sources were located with the GPS. Phase II has repeated the exercise to see changes in the district. 3320 water sources as identified in 2004 and altogether 4223 including new water sources were identified and measured in 2014. Between 2004 and 2014, 50% flow rate (yield) deduction of point sources’ average yield in 10 years is found. Similarly, 21.6% and 34% deductions of average yield were found in spring and stream water sources respectively. The rainfall from 2002 to 2013 shows erratic rainfalls in the district. The monsoon peak month is not consistent and the trend shows the decrease of annual rainfall 16.7 mm/year. Further, the temperature trend between 2002 and 2013 shows warming of + 0.0410C/year.

Keywords: climate change, rainfall, source discharge, water sources

Procedia PDF Downloads 282
1889 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 184
1888 A Turn-on Fluorescent Sensor for Pb(II)

Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman

Abstract:

Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.

Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor

Procedia PDF Downloads 671
1887 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 543
1886 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape

Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu

Abstract:

Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.

Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric

Procedia PDF Downloads 338
1885 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus

Authors: Mudawi M. Nour

Abstract:

Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.

Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica

Procedia PDF Downloads 74
1884 Development of Liquefaction-Induced Ground Damage Maps for the Wairau Plains, New Zealand

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the north-east of the South Island of New Zealand in the region of Marlborough. The region is cut by many active crustal faults such as the Wairau, Awatere, and Clarence faults, which give rise to frequent seismic events. This paper presents the preliminary results of the overall project in which liquefaction-induced ground damage maps are developed in the Wairau Plains based on the Ministry of Business, Innovation and Employment NZ guidance. A suite of maps has been developed in relation to the level of details that was available to inform the liquefaction hazard mapping. Maps at the coarsest level of detail make use of regional geologic information, applying semi-quantitative criteria based on geological age, design peak ground accelerations and depth to the water table. The next level of detail incorporates higher resolution surface geomorphologic characteristics to better delineate potentially liquefiable and non-liquefiable deposits across the region. The most detailed assessment utilised CPT sounding data to develop ground damage response curves for areas across the region and provide a finer level of categorisation of liquefaction vulnerability. Linking these with design level earthquakes defined through NZGS guidelines will enable detailed classification to be carried out at CPT investigation locations, from very low through to high liquefaction vulnerability. To update classifications to these detailed levels, CPT investigations in geomorphic regions are grouped together to provide an indication of the representative performance of the soils in these areas making use of the geomorphic mapping outlined above.

Keywords: hazard, liquefaction, mapping, seismicity

Procedia PDF Downloads 139
1883 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application

Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh

Abstract:

Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.

Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide

Procedia PDF Downloads 180
1882 Improved Performance of AlGaN/GaN HEMTs Using N₂/NH₃ Pretreatment before Passivation

Authors: Yifan Gao

Abstract:

Owing to the high breakdown field, high saturation drift velocity, 2DEG with high density and mobility and so on, AlGaN/GaN HEMTs have been widely used in high-frequency and high-power applications. To acquire a higher power often means higher breakdown voltage and higher drain current. Surface leakage current is usually the key issue affecting the breakdown voltage and power performance. In this work, we have performed in-situ N₂/NH₃ pretreatment before the passivation to suppress the surface leakage and achieve device performance enhancement. The AlGaN/GaN HEMT used in this work was grown on a 3-in. SiC substrate, whose epitaxial structure consists of a 3.5-nm GaN cap layer, a 25-nm Al₀.₂₅GaN barrier layer, a 1-nm AlN layer, a 400-nm i-GaN layer and a buffer layer. In order to analyze the mechanism for the N-based pretreatment, the details are measured by XPS analysis. It is found that the intensity of Ga-O bonds is decreasing and the intensity of Ga-N bonds is increasing, which means with the supplement of N, the dangling bonds on the surface are indeed reduced with the forming of Ga-N bonds, reducing the surface states. The surface states have a great influence on the leakage current, and improved surface states represent a better off-state of the device. After the N-based pretreatment, the breakdown voltage of the device with Lₛ𝒹=6 μm increased from 93V to 170V, which increased by 82.8%. Moreover, for HEMTs with Lₛ𝒹 of 6-μm, we can obtain a peak output power (Pout) of 12.79W/mm, power added efficiency (PAE) of 49.84% and a linear gain of 20.2 dB at 60V under 3.6GHz. Comparing the result with the reference 6-μm device, Pout is increased by 16.5%. Meanwhile, PAE and the linear gain also have a slight increase. The experimental results indicate that using N₂/NH₃ pretreatment before passivation is an attractive approach to achieving power performance enhancement.

Keywords: AlGaN/GaN HEMT, N-based pretreatment, output power, passivation

Procedia PDF Downloads 317
1881 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 342
1880 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 388
1879 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing

Authors: Dawei Cai

Abstract:

This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.

Keywords: wearable device, MEMS sensor, ubiquitous computing, NFC

Procedia PDF Downloads 239
1878 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 186
1877 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 155
1876 Detection of Adulterants in Milk Using IoT

Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha

Abstract:

The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.

Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0

Procedia PDF Downloads 78
1875 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques

Authors: Javad Yarmahmoudi, Alireza Mirzaee

Abstract:

Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.

Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT

Procedia PDF Downloads 327
1874 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 534
1873 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes

Authors: Ruijia Hu, Susanna T.Y. Tong

Abstract:

Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.

Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models

Procedia PDF Downloads 52