Search results for: mapping algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4638

Search results for: mapping algorithm

1788 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 389
1787 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 80
1786 Mapping Consumer Role: A Systematic Review of Circular Economy Strategies

Authors: Kiana Keshavarz, Carmen Jaca, María J. Álvarez

Abstract:

The shift to a circular economy necessitates a substantial change in consumer behavior, a complex and unpredictable actor that proves challenging to guide toward sustainability. This systematic literature review addresses the pivotal role that consumers play in propelling a circular economy, emphasizing the critical gap between positive attitudes and responsible actions. In this review, we utilized two prominent databases, Scopus and Web of Science, during the months of July and August 2023. A comprehensive screening process considered 467 articles, ultimately including 115 in the study for detailed analysis. Recognizing the transformative potential of consumer behavior, the study examines three key phases of consumer interaction with products —pre-purchasing decision, careful usage, and post-use management—identifying consumer-centric strategies that boost sustainability in each phase. Contrary to the prevailing emphasis on post-management strategies in society, the synthesis highlights the profound impact of strategies enacted during the pre-purchasing decision phase. In the investigation of the persistent attitude-behavior gap, factors influencing this gap and impeding consumers from engaging in sustainable actions are identified based on behavioral theories. Subsequently, strategies aimed at diminishing barriers and boosting motivators, as outlined in the literature, are presented. Recognizing the transformative potential of consumer behavior, the study underscores the pivotal roles of policymakers, businesses, and governments in fostering a more sustainable future. Ultimately, there is a call for further research to enhance the depth of analysis. This could be achieved through a more focused approach, such as narrowing the scope to a specific industry or applying a specific behavioral theory.

Keywords: circular economy, consumer behavior, sustainability, attitude-behavior gap, systematic literature review

Procedia PDF Downloads 79
1785 Low Complexity Deblocking Algorithm

Authors: Jagroop Singh Sidhu, Buta Singh

Abstract:

A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.

Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth

Procedia PDF Downloads 462
1784 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle

Authors: Mejri Achref

Abstract:

This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.

Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy

Procedia PDF Downloads 178
1783 Real Time Multi Person Action Recognition Using Pose Estimates

Authors: Aishrith Rao

Abstract:

Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.

Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks

Procedia PDF Downloads 141
1782 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 282
1781 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
1780 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products

Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry

Abstract:

The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.

Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively

Procedia PDF Downloads 90
1779 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
1778 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain

Authors: Ravinder Kaur

Abstract:

Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.

Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide

Procedia PDF Downloads 148
1777 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization

Authors: K. Umbleja, M. Ichino, H. Yaguchi

Abstract:

In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.

Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data

Procedia PDF Downloads 170
1776 A Digital Filter for Symmetrical Components Identification

Authors: Khaled M. El-Naggar

Abstract:

This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.

Keywords: estimation, faults, measurement, symmetrical components

Procedia PDF Downloads 465
1775 Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma

Authors: Gabriele Ciasca, Tanya E. Sassun, Eleonora Minelli, Manila Antonelli, Massimiliano Papi, Antonio Santoro, Felice Giangaspero, Roberto Delfini, Marco De Spirito

Abstract:

Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions.

Keywords: AFM, nano-mechanics, nanomedicine, brain tumors, glioblastoma

Procedia PDF Downloads 341
1774 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
1773 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 357
1772 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 79
1771 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 602
1770 99mTc Scintimammography in an Equivocal Breast Lesion

Authors: Malak Shawky Matter Elyas

Abstract:

Introduction: Early detection of breast cancer is the main tool to decrease morbidity and mortality rates. Many diagnostic tools are used, such as mammograms, ultrasound and magnetic resonance imaging, but none of them is conclusive, especially in very small sizes, less than 1 cm. So, there is a need for more accurate tools. Patients and methods: This study involved 13 patients with different breast lesions. 6 Patients had breast cancer, and one of them had metastatic axillary lymph nodes without clinically nor mammographically detected breast mass proved by biopsy and histopathology. Of the other 7 Patients, 4 of them had benign breast lesions proved by biopsy and histopathology, and 3 Patients showed Equivocal breast lesions on a mammogram. A volume of 370-444Mbq of (99m) Tc/ bombesin was injected. Dynamic 1-min images by Gamma Camera were taken for 20 minutes immediately after injection in the anterior view. Thereafter, two static images in anterior and prone lateral views by Gamma Camera were taken for 5 minutes. Finally, single-photon emission computed tomography images were taken for each patient. The definitive diagnosis was based on biopsy and histopathology. Results: 6 Patients with breast cancer proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography). 1 out of 4 Patients with benign breast lesions proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography) while the other 3 Patients showed Negative findings on Sestamibi. 3 Patients out of 3 Patients with equivocal breast findings on mammogram showed Positive Findings on Sestamibi (Scintimammography) and proved by biopsy and histopathology. Conclusions: While we agree that Scintimammography will not replace mammograms as a mass screening tool, we believe that many patients will benefit from Scintimammography, especially women with dense breast tissues and in the presence of breast implants that are difficult to diagnose by mammogram, wherein its sensitivity is low and in women with metastatic axillary lymph nodes without clinically nor mammographically findings. We can use Scintimammography in sentinel lymph node mapping as a more accurate tool, especially since it is non-invasive.

Keywords: breast., radiodiagnosis, lifestyle, surgery

Procedia PDF Downloads 31
1769 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 396
1768 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 462
1767 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 422
1766 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
1765 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
1764 A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time

Authors: Marsden Jacques, Dennis Wong

Abstract:

A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change.

Keywords: weak order, Cayley permutation, Gray code, shift Gray code

Procedia PDF Downloads 178
1763 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
1762 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 446
1761 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
1760 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 366
1759 Maximizing the Community Services of Multi-Location Public Facilities in Urban Residential Areas by the Use of Constructing the Accessibility Index and Spatial Buffer Zone

Authors: Yen-Jong Chen, Jei-An Su

Abstract:

Public use facilities provide the basic infrastructure supporting the needs of urban sustainable development. These facilities include roads (streets), parking areas, green spaces, public schools, and city parks. However, how to acquire land with the proper location and size still remains uncertain in a capitalist economy where land is largely privately owned, such as in cities in Taiwan. The issue concerning the proper acquisition of reserved land for local public facilities (RLPF) policies has been continuously debated by the Taiwanese government for more than 30 years. Lately, the government has been re-evaluating projects connected with existing RLPF policies from the viewpoints of the needs of local residents, including the living environments of older adults. This challenging task includes addressing the requests of official bureau administrators, citizens whose property rights and current use status are affected, and other stakeholders, along with the means of development. To simplify the decision to acquire or release public land, we selected only public facilities that are needed for living in the local community, including parks, green spaces, plaza squares, and land for kindergartens, schools, and local stadiums. This study categorized these spaces as the community’s “leisure public facilities” (LPF). By constructing an accessibility index of the services of such multi-function facilities, we computed and produced a GIS map of spatial buffer zones for each LPF. Through these procedures, the service needs provided by each LPF were clearly identified. We then used spatial buffer zone envelope mapping to evaluate these service areas. The results obtained can help decide which RLPF should be acquired or released so that community services can be maximized under a limited budget.

Keywords: urban public facilities, community demand, accessibility, spatial buffer zone, Taiwan

Procedia PDF Downloads 83