Search results for: golden ratio
1838 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation
Abstract:
Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation
Procedia PDF Downloads 3061837 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 721836 Optimization of the Production Processes of Biodiesel from a Locally Sourced Gossypium herbaceum and Moringa oleifera
Authors: Ikechukwu Ejim
Abstract:
This research project addresses the optimization of biodiesel production from gossypium herbaceum (cottonseed) and moringa oleifera seeds. Soxhlet extractor method using n-hexane for gossypium herbaceum (cottonseed) and ethanol for moringa oleifera were used for solvent extraction. 1250 ml of oil was realized from both gossypium herbaceum (cottonseed) and moringa oleifera seeds before characterization. In transesterification process, a 4-factor-3-level experiment was conducted using an optimal design of Response Surface Methodology. The effects of methanol/oil molar ratio, catalyst concentration (%), temperature (°C) and time (mins), on the yield of methyl ester for both cottonseed and moringa oleifera oils were determined. The design consisted of 25 experimental runs (5 lack of fit points, five replicate points, 0 additional center points and I optimality) and provided sufficient information to fit a second-degree polynomial model. The experimental results suggested that optimum conditions were as follows; cottonseed yield (96.231%), catalyst concentration (0.972%), temperature (55oC), time (60mins) and methanol/oil molar ratios (8/1) respectively while moringa oleifera optimum values were yield (80.811%), catalyst concentration (1.0%), temperature (54.7oC), time (30mins ) and methanol/oil molar ratios (8/1) respectively. This optimized conditions were validated with the actual biodiesel yield in experimental trials and literature.Keywords: optimization, Gossypium herbaceum, Moringa oleifera, biodiesel
Procedia PDF Downloads 1461835 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 591834 The Mediating Effect of Taxpayers’ Compliance on Internal Business Process-Tax Revenue Relationship: A Case Study at the Directorate General of Taxation in Indonesia
Authors: Efrizal, Ferdiansyah, Noorlailie Soewarno, Bambang Tjahjadi
Abstract:
Tax revenue plays an important role in the State Budget of the Government of Indonesia (GOI). The GOI keeps raising tax revenue portion of the Budget from year to year. The low tax ratio of 11 percent in Indonesia shows a big opportunity to collect taxes in the future. The Directorate General of Taxation (DGT) is the institution mandated by the Law to collect tax revenue. This is a case study using quantitative and qualitative approaches. This study introduces contingent factors of taxpayers’ compliance as the mediating variable and internal business process as the independent variable. This study aims to empirically test the contingency theory, especially the mediating effect of taxpayers’ compliance on internal business process-tax revenue relationship. Internal business processes of the DGT include servicing, counseling, expanding, supervising, inspecting, and enforcing. The secondary data of 31 regional offices representing 293 tax offices in Indonesia was collected and analyzed using Partial Least Square. The result showed the following: (1) internal business process affected tax revenue; (2) taxpayers’ compliance did not mediate internal business processes - tax revenue relationship, and (3) taxpayers’ compliance affected tax revenue. In-depth interviews revealed that the DGT needs to make more innovations in business processes in the future.Keywords: innovations, internal business process, taxpayers’ compliance, tax revenue
Procedia PDF Downloads 3561833 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures
Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan
Abstract:
Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate
Procedia PDF Downloads 511832 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties
Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti
Abstract:
High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia
Procedia PDF Downloads 1481831 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures
Authors: Moumita Sit, Chaitali Ray
Abstract:
The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress
Procedia PDF Downloads 1501830 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment
Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano
Abstract:
Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power
Procedia PDF Downloads 981829 Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract
Authors: S. Lekhavat, T. Kajsongkram, S. Sang-han
Abstract:
Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml).Keywords: antioxidant activity, enzyme, extraction, ginger
Procedia PDF Downloads 2561828 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix
Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan
Abstract:
The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.Keywords: biomaterials, biowaste recycling, materials processing, microwave processing
Procedia PDF Downloads 3521827 Dietary Pattern and Risk of Breast Cancer Among Women:a Case Control Study
Authors: Huma Naqeeb
Abstract:
Epidemiological studies have shown the robust link between breast cancer and dietary pattern. There has been no previous study conducted in Pakistan, which specifically focuses on dietary patterns among breast cancer women. This study aims to examine the association of breast cancer with dietary patterns among Pakistani women. This case-control research was carried in multiple tertiary care facilities. Newly diagnosed primary breast cancer patients were recruited as cases (n = 408); age matched controls (n = 408) were randomly selected from the general population. Data on required parameters were systematically collected using subjective and objective tools. Factor and Principal Component Analysis (PCA) techniques were used to extract women’s dietary patterns. Four dietary patterns were identified based on eigenvalue >1; (i) veg-ovo-fish, (ii) meat-fat-sweet, (iii) mix (milk and its products, and gourds vegetables) and (iv) lentils - spices. Results of the multiple regressions were displayed as adjusted odds ratio (Adj. OR) and their respective confidence intervals (95% CI). After adjusted for potential confounders, veg-ovo-fish dietary pattern was found to be robustly associated with a lower risk of breast cancer among women (Adj. OR: 0.68, 95%CI: (0.46-0.99, p<0.01). The study findings concluded that attachment to the diets majorly composed of fresh vegetables, and high quality protein sources may contribute in lowering the risk of breast cancer among women.Keywords: breast cancer, dietary pattern, women, principal component analysis
Procedia PDF Downloads 1231826 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption
Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui
Abstract:
The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa
Procedia PDF Downloads 2281825 Epidemiology of Primary Bronchopulmonary Cancer in Tunisia
Authors: Melliti Rihab, Zaeid Sonia, Khechine Wiem, Daldoul Amira
Abstract:
Introduction: Lung cancer is the leading cause of cancer death. Its incidence is increasing, and its prognosis remains pejorative. We present the clinical, pathological, and therapeutic characteristics of bronchopulmonary cancer (BPC) in Tunisia. Methods: Retrospective study including patients followed in the oncology department of the University Hospital of Monastir between April 2014 and December 2021 suffering from lung cancer. Results: These are 117 patients, including 86.3% men and 13.7% women (sex ratio 6.3). The average age was 64 years ± 9 (37-83), with 95.7% being over 50 years old. Patients were smokers in 82% of cases. The clinical signs were dominated by chest pain (27.5%) and dyspnea in 21.1% of cases. In 6 patients, an episode of COVID-19 infection revealed the diagnosis. Half of the patients had a PS between 0 and 1. Small cell lung cancer was present in 18 patients (15.4%). The majority of non small cell lung cancer was of the adenocarcinoma type (68.7%). The diagnosis was late (stage IV) in 62.4% of cases. BPC was metastatic to bone (52%), contralateral lung (25.9%), and brain (27.3%). Patients were oligometastatic in 26% of cases. Surgery and radiotherapy were performed respectively in 14.5% and 23.1% of cases. Three-quarters of the patients had had nutrition (75.2%). The ROS1 mutation was present in 1 patient. PDL-1 expression was >40% in 2 patients. Survival was mean eight months ± 7.4. Conclusion: Lung cancer is diagnosed at a late stage in Tunisia. The lack of molecular study for non-small cell PBC and the lack of marketing authorization for tyrosine kinase inhibitors in Tunisia make the management incomplete.Keywords: SCLC, NCSLC, ROS1, PDL1
Procedia PDF Downloads 791824 A Higher Order Shear and Normal Deformation Theory for Functionally Graded Sandwich Beam
Authors: R. Bennai, H. Ait Atmane, Jr., A. Tounsi
Abstract:
In this work, a new analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the free vibration of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of FGM materials with a homogeneous fraction compared to the middle layer. Movement equations are obtained by the energy minimization principle. Analytical solutions of free vibration and buckling are obtained for sandwich beams under different support conditions; these conditions are taken into account by incorporating new form functions. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio - length) on the vibration free and buckling of an FGM sandwich beams.Keywords: functionally graded sandwich beam, refined shear deformation theory, stretching effect, free vibration
Procedia PDF Downloads 2461823 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4161822 Use of Treated Municipal Wastewater on Artichoke Crop
Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino
Abstract:
Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling
Procedia PDF Downloads 4271821 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer
Authors: Mannal Tariq
Abstract:
Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour
Procedia PDF Downloads 3041820 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests
Authors: Monalisha Nayak, T. G. Sitharam
Abstract:
Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)
Procedia PDF Downloads 2321819 Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite
Authors: Abdallah M. Abdelkawy, Tarek M. El Hossainya, I. El Mahallawib
Abstract:
Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs.Keywords: machinability, cutting force, surface roughness, Ra, RSM, ANOVA, MMNCs
Procedia PDF Downloads 3691818 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid
Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum
Abstract:
Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid
Procedia PDF Downloads 2171817 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 2731816 The Cellular Internalization Mechanisms of Cationic Niosomes/DNA Complex in HeLa Cells
Authors: Orapan Paecharoenchai, Tanasait Ngawhirunpat, Theerasak Rojanarata, Auayporn Apirakaramwong, Praneet Opanasopit
Abstract:
Cationic niosomes formulated with Span20, cholesterol and novel synthesized spermine-cationic lipids (2-hydrocarbon tail and 4- hydrocarbon tail) in a molar ratio of 2.5:2.5:1 can mediate high gene transfection in vitro. However, the uptake mechanisms of these systems are not well clarified. In the present study, effect of endocytic inhibitors on the transfection efficiency of niosomes/DNA complexes was determined on a human cervical carcinoma cell line (HeLa cells) using the inhibitors of macropinocytosis (wortmannin), clathrin- and caveolae-mediated endocytosis (methyl-β-cyclodextrin), clathrin-mediated endocytosis (chlorpromazine), caveolae-mediated endocytosis (genistein and filipin), cytosolic transfer (ammonium chloride) and microtubules polymerization (nocodazole). The transfection of niosomes with 2-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride and filipin, respectively, whereas, the transfection of niosomes with 4-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride, methyl-β-cyclodextrin and filipin, respectively. It can be concluded that these niosomes/DNA complexes were internalized predominantly by endocytosis via clathrin and caveolae-independent pathway.Keywords: cellular internalization, cationic niosomes, gene carriers, spermine-cationic lipids
Procedia PDF Downloads 4561815 Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles
Authors: Rawan Aljabbari, Thamer Alomayri, Faisal G. Al-Maqate, Abeer Al Suwat
Abstract:
For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials.Keywords: fly ash, structural analysis, optical properties, morphology
Procedia PDF Downloads 861814 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features
Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang
Abstract:
This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.Keywords: entropy generation, exothermicity or endothermicity, forced convection, local thermal non-equilibrium, analytical modelling
Procedia PDF Downloads 4151813 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators
Procedia PDF Downloads 4331812 Numerical Investigation of the Flow Around Multi-Element Airfoils
Authors: Taylan Ozturk, Osama Maklad
Abstract:
This study examines the aerodynamic and flow properties of a multi-element airfoil using computational fluid dynamics (CFD) research. This computational analysis aims to optimize slat design concerning lift-drag coefficients and to determine the ideal gap size between the main airfoil and the front flap. It examines the influence of varying angles of attack and the effects of varied Reynolds numbers. A NACA 2412 airfoil, equipped with custom-designed front and rear flaps, was modeled in SolidWorks and simulated in ANSYS Fluent utilizing the k-ω SST turbulence model. This study quantifies lift and drag coefficients, turbulent kinetic energy, and vorticity magnitude across various configurations. The results clearly indicate that the slat-optimized design geometry featuring a 4 mm gap provides the best performance regarding both lift and drag, with maximum efficiency achieved at a 4-degree angle of attack. Furthermore, the results indicate the initiation of stall conditions beyond 20 degrees and demonstrate how an increase in Reynolds numbers influences flow separation and turbulence patterns. In addition, the maximum L/D ratio which is 36.18 achieved. These findings enhance the comprehension of multi-element airfoil behavior, directly impacting aircraft design and operation, particularly in high-lift situations.Keywords: multi-element airfoil, CFD simulation, aerodynamic characteristics, Reynolds number analysis
Procedia PDF Downloads 211811 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus
Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani
Abstract:
Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.Keywords: natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus
Procedia PDF Downloads 4031810 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3781809 Effect of Weed Control and Different Plant Densities the Yield and Quality of Safflower (Carthamus tinctorius L.)
Authors: Hasan Dalgic, Fikret Akinerdem
Abstract:
This trial was made to determine effect of different plant density and weed control on yield and quality of winter sowing safflower (Carthamus tinctorius L.) in Selcuk University, Agricultural Faculty trial fields and the effective substance of Trifluran was used as herbicide. Field trial was made during the vegetation period of 2009-2010 with three replications according to 'Split Plots in Randomized Blocks' design. The weed control techniques were made on main plots and row distances was set up on sub-plots. The trial subjects were consisting from three weed control techniques as fallowing: herbicide application (Trifluran), hoeing and control beside the row distances of 15 cm and 30 cm. The results were ranged between 59.0-76.73 cm in plant height, 40.00-47.07 cm in first branch height, 5.00-7.20 in number of branch per plant, 6.00-14.73 number of head per plant, 19.57-21.87 mm in head diameter, 2125.0-3968.3 kg ha-1 in seed yield, 27.10-28.08 % in crude oil rate and 531.7-1070.3 kg ha-1. According to the results, Remzibey safflower cultivar showed the highest seed yield on 30 cm of row distance and herbicide application by means of the direct effects of plant height, first branch height, number of branch per plant, number of head per plant, table diameter, crude oil rate and crude oil yield.Keywords: safflower, herbicide, row spacing, seed yield, oil ratio, oil yield
Procedia PDF Downloads 333