Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3795

Search results for: neural perception.

975 ePLANETe Idea and Functionalities: Agricultural Sustainability Assessment, Biodiversity, and Stakeholder Involvement

Authors: S. K. Ashiquer Rahman

Abstract:

A cutting-edge online knowledge mediation system called "ePLANETe" provides a framework for building knowledge, tools and methods for all education, research and sustainable practices and elsewhere, as well as the deliberative assessment support of sustainability, biodiversity, and stakeholder involvement issues of the territorial development sector, e.g., agriculture.The purpose is to present, as sectorial and institutional perception, the 'ePLANETe' concept and functionalities as an experimental online platform for contributing the sustainability assessment, biodiversity, and stakeholder involvement. In the upshot, the concept of 'ePLANETe'isan investigation of the challenges of "online things, technology and application". The new digital technologies are exploited to facilitate collaborative technology and application to territorial development issues, e.g., agriculture. In order to investigate the dealing capacity (Qualitative and Quantitative) of sustainability, biodiversity, and stakeholder involvement of the agriculture sector through the stakeholder-based integrated assessment "Deliberation Support Tools (DST) and INTEGRAAL method" of collective resources. Specifically, this paper focuses on integrating system methodologies with deliberation tools for collective assessment and decision-making in implementing regional plans of agriculture. The aim of this report is to identify effective knowledge and tools and to enable deliberation methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.

Keywords: sustainability, biodiversity, stakeholder, dst, integraal

Procedia PDF Downloads 116
974 An Integrated Framework for Seismic Risk Mitigation Decision Making

Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani

Abstract:

One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.

Keywords: decision making, demolition, construction management, seismic retrofit

Procedia PDF Downloads 237
973 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 105
972 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework

Authors: Nicola Rubino

Abstract:

This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.

Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points

Procedia PDF Downloads 278
971 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 201
970 Impact of Television on the Coverage of Lassa Fever Disease in Nigeria

Authors: H. Shola Adeosun, F. Ajoke Adebiyi

Abstract:

This study appraises the impact of television on the coverage of Lassa Fever disease. The objectives of the study are to find out whether television is an effective tool for raising awareness about Lassa fever shapes the perception of members of the public. The research work was based on the theoretical foundation of Agenda – setting and reinforcement theory. Survey research method was adopted in the study to elicit data from the residents of Obafemi Owode Local Government, area of Ogun state. Questionnaire and oral interview were adopted as a tool for data gathering. Simple random sampling techniques were used to draw a sample for this study. Out of filled 400 questionnaires distributed to the respondents. 37 of them were incorrectly filled and returned at the stipulated time. This is about (92.5% Tables, percentages, and figures were used to analyse and interpret the data and hypothesis formulation for this study revealed that Lassa fever diseases with higher media coverage were considered more serious and more representative of a disease and estimated to have lower incidents, than diseases less frequently found in the media. Thus, 92% of the respondents agree that they have access to television coverage of Lassa fever disease led to exaggerated perceptions of personal vulnerability. It, therefore, concludes that there is a need for relevant stakeholders to ensure better community health education and improved housing conditions in southwestern Nigeria, with an emphasis on slum areas and that Nigeria need to focus on the immediate response, while preparing for the future because a society or community is all about the people who inhabit. Therefore every effort must be geared towards their society and survival.

Keywords: impact, television, coverage, Lassa fever disease

Procedia PDF Downloads 212
969 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
968 Behavior, Temperament and Food Intake of Urban Indian Adolescents

Authors: Preeti Khanna, Bani T. Aeri

Abstract:

Background: Recent studies have indicated challenges that hamper health and wellbeing of a vast majority of adolescents in developing countries. Many modifiable factors like behavior and temperament related to food intake among adolescents have not been adequately explored. The aim of the proposed research is to study the impact of behavior and temperament on food intake and diet quality of adolescents. Objectives: In the present study data on dietary behavior and anthropometry of adolescent boys & girls (aged 13-16 years) studying in public schools of Delhi will be gathered to ascertain the quality of diet among adolescent boys and girls and to study the effect of behavior and temperament on diet quality of adolescents. Methods: In total, 400 adolescents will participate in this cross-sectional study. Weight and height of adolescents will be measured and BMI will be calculated. Information will be obtained on their socio-demographic profile and various factors influencing their Food Choices and diet quality such as body image perception, Behavior, temperament, locus of control and parental influence. Expected results: Several direct effects of adolescent traits and behavior on food intake will be observed. Maturational patterns and gender differences in behavior traits will be assessed. By profiling of the behavior and temperament traits, we will have a better understanding of impact of these factors on weight and eating behaviors in overweight/obese or even underweight adolescents. Conclusions: The proposed study will highlight the association of behavioral factors with nutritional status of adolescents. It will also serve as a strategic approach for the obesity prevention and health management policies designed for adolescents.

Keywords: behaviour, temperament, food intake, adolescents

Procedia PDF Downloads 242
967 An Inspection of Two Layer Model of Agency: An fMRI Study

Authors: Keyvan Kashkouli Nejad, Motoaki Sugiura, Atsushi Sato, Takayuki Nozawa, Hyeonjeong Jeong, Sugiko Hanawa , Yuka Kotozaki, Ryuta Kawashima

Abstract:

The perception of agency/control is altered with presence of discrepancies in the environment or mismatch of predictions (of possible results) and actual results the sense of agency might become altered. Synofzik et al. proposed a two layer model of agency: In the first layer, the Feeling of Agency (FoA) is not directly available to awareness; a slight mismatch in the environment/outcome might cause alterations in FoA, while the agent still feels in control. If the discrepancy passes a threshold, it becomes available to consciousness and alters Judgment of Agency (JoA), which is directly available in the person’s awareness. Most experiments so far only investigate subjects rather conscious JoA, while FoA has been neglected. In this experiment we target FoA by using subliminal discrepancies that can not be consciously detectable by the subjects. Here, we explore whether we can detect this two level model in the subjects behavior and then try to map this in their brain activity. To do this, in a fMRI study, we incorporated both consciously detectable mismatching between action and result and also subliminal discrepancies in the environment. Also, unlike previous experiments where subjective questions from the participants mainly trigger the rather conscious JoA, we also tried to measure the rather implicit FoA by asking participants to rate their performance. We compared behavioral results and also brain activation when there were conscious discrepancies and when there were subliminal discrepancies against trials with no discrepancies and against each other. In line with our expectations, conditions with consciously detectable incongruencies triggered lower JoA ratings than conditions without. Also, conditions with any type of discrepancies had lower FoA ratings compared to conditions without. Additionally, we found out that TPJ and angular gyrus in particular to have a role in coding of JoA and also FoA.

Keywords: agency, fMRI, TPJ, two layer model

Procedia PDF Downloads 470
966 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
965 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan

Abstract:

The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.

Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology

Procedia PDF Downloads 348
964 The Impact of Reshuffle in Indonesian Working Cabinet Volume II to Abnormal Return and Abnormal Trading Activity of Companies Listed in the Jakarta Islamic Index

Authors: Fatin Fadhilah Hasib, Dewi Nuraini, Nisful Laila, Muhammad Madyan

Abstract:

A big political event such as Cabinet reshuffle mostly can affect the stock price positively or negatively, depend on the perception of each investor and potential investor. This study aims to analyze the movement of the market and trading activities which respect to an event using event study method. This method is used to measure the movement of the stock exchange in which abnormal return can be obtained by investor related to the event. This study examines the differences of reaction on abnormal return and trading volume activity from the companies listed in the Jakarta Islamic Index (JII), before and after the announcement of the Cabinet Work Volume II on 27 July 2016. The study was conducted in observation of 21 days in total which consists of 10 days before the event and 10 days after the event. The method used in this study is event study with market adjusted model method that observes market reaction to the information of an announcement or publicity events. The Results from the study showed that there is no significant negative nor positive reaction at the abnormal return and abnormal trading before and after the announcement of the cabinet reshuffle. It is indicated by the results of statistical tests whose value not exceeds the level of significance. Stock exchange of the JII just reflects from the previous stock prices without reflecting the information regarding to the Cabinet reshuffle event. It can be concluded that the capital market is efficient with a weak form.

Keywords: abnormal return, abnormal trading volume activity, event study, political event

Procedia PDF Downloads 293
963 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 23
962 Utilizing Minecraft Java Edition for the Application of Fire Disaster Procedures to Establish Fire Disaster Readiness for Grade 12 STEM students of DLSU-IS

Authors: Aravella Flores, Jose Rafael E. Sotelo, Luis Romulus Phillippe R. Javier, Josh Christian V. Nunez

Abstract:

This study focuses on analyzing the performance of Grade 12 STEM students of De La Salle University - Integrated School that has completed the Disaster Readiness and Risk Reduction course in handling fire hazards through Minecraft Java Edition. This platform is suitable because fire DRRR is challenging to learn in a practical setting as well as questionable with regard to supplementing the successful implementation of textbook knowledge into actual practice. The purpose of this study is to acknowledge whether Minecraft can be a suitable environment to familiarize oneself to fire DRRR. The objectives are achieved through utilizing Minecraft in simulating fire scenarios which allows the participants to freely act upon and practice fire DRRR. The experiment was divided into the grounding and validation phase, where researchers observed the performance of the participants in the simulation. A pre-simulation and post-simulation survey was given to acknowledge the change in participants’ perception of being able to utilize fire DRRR procedures and their vulnerabilities. The paired t-test was utilized, showing significant differences in the pre-simulation and post-simulation survey scores, thus, insinuating improved judgment of DRRR, lessening their vulnerabilities in the possibility of encountering a fire hazard. This research poses a model for future research which can gather more participants and dwell on more complex codes outside just command blocks and into the code lines of Minecraft itself.

Keywords: minecraft, DRRR, fire, disaster, simulation

Procedia PDF Downloads 137
961 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
960 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 12
959 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate

Authors: Malihe Ahmadi

Abstract:

Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.

Keywords: historical gardens, climate, properties of Iranian gardens, Iran

Procedia PDF Downloads 397
958 Potentials of Ecotourism to Nature Conservation and Improvement of Livelihood of People around Ayikunnugba Waterfalls, Oke-Ila Orangun, Nigeria

Authors: Funmilola Ajani, I. A. Ayodele, O.A. Filade

Abstract:

Tourism has direct, indirect and induced impacts on economic development and the industry is one of the most crucial tradable sectors in the world. The study was therefore carried out to assess the potentials of ecotourism to nature conservation and its contributions to the improvement of the livelihood of Oke- Ila Orangun community. One hundred and fifty residents were chosen by stratified random sampling as respondents. Respondents awareness of ecotourism was assessed using an 8-point scale while respondents acceptance of ecotourism was assessed using a 14-point scale. Contributions to improvement of livelihood of residents and perceived constraints identified by residents to the development of the water fall and socio-economic variables among others were also obtained. Also, in-depth interview was conducted with the king of Ayikunnugba. The data was analyzed using descriptive statistics such as frequency count, mean and percentages. Correlation analysis was used to determine whether or not a relationship exists between two variables at 0.05 level of significance. Perception of respondents based on the awareness of ecotourism and contributions to livelihood development was high (78.3%). A significant relationship exists between acceptance of ecotourism and its contributions to peoples’ livelihood. Also, relationship between constraints encountered by respondents and its contributions to peoples livelihood is highly significant(r =0.546; P =0.00). Majority (71.3%) of the respondents believed that the development of the area will not lead to environmental pollution. Public- Private- Partnership (PPP) is therefore recommended so as to enable the recreation site to meet international standard in terms of development and management.

Keywords: Ayikunnugba water fall, ecotourism constraints, nature conservation, awareness

Procedia PDF Downloads 157
957 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 519
956 Structure of Consciousness According to Deep Systemic Constellations

Authors: Dmitry Ustinov, Olga Lobareva

Abstract:

The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.

Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology

Procedia PDF Downloads 249
955 Social Identification among Employees: A System Dynamic Approach

Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed

Abstract:

Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.

Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking

Procedia PDF Downloads 137
954 Cryptocurrency Realities: Insights from Social and Economic Psychology

Authors: Sarah Marie

Abstract:

In today's dynamic financial landscape, cryptocurrencies represent a paradigm shift characterized by innovation and intense debate. This study probes into their transformative potential and the challenges they present, offering a balanced perspective that recognizes both their promise and pitfalls. Emulating the engaging style of a TED Talk, this research goes beyond academic analysis, serving as a critical bridge to reconcile the perspectives of cryptocurrency skeptics and enthusiasts, fostering a well-informed dialogue. The study employs a mixed-method approach, analyzing current trends, regulatory landscapes, and public perceptions in the cryptocurrency domain. It distinguishes genuine innovators in this field from ostentatious opportunists, echoing the sentiment that real innovation should be separated from mere showmanship. If one is unfamiliar with who is being referenced, they can likely spot them leaning against their Lamborghinis outside "Crypto" conventions, looking greasy. Major findings reveal a complex scenario dominated by regulatory uncertainties, market volatility, and security issues, emphasizing the need for a coherent regulatory framework that balances innovation with risk management and sustainable practices. The study underscores the importance of transparency and consumer protection in fostering responsible growth within the cryptocurrency ecosystem. In conclusion, the research advocates for education, innovation, and ethical governance in the realm of cryptocurrencies. It calls for collaborative efforts to navigate the intricacies of this evolving landscape and to realize its full potential in a responsible, inclusive, and forward-thinking manner.

Keywords: financial landscape, innovation, public perception, transparency

Procedia PDF Downloads 51
953 Two Fold Dimensional Analysis of Post-Employment Dissonance in Employer Branding Framework of it SMES

Authors: J. Janani, S. Gomathi

Abstract:

Despite the new economy is embodied with the ample size of talent pool, the corporate world is facing the hardship in the mismatch of talent demand supply. Therefore to combat with this fallout crisis, here depicts the relevance of Employer Branding. Employer branding is gaining its popularity in Large sized companies especially IT companies but less employer branding awareness among IT SMEs (Small and Medium size Enterprises). There are N range of analysis has been dole out on employer branding from different perspectives and in different industries. The hidden factor behind the employer branding namely the post employment dissonance was not given a lot of importance into the research picture. The present study examines the employer branding as the employer image and the organizational identity. It focuses on the two fold dimensional branding initiatives namely job offer attributes and organizational attractiveness. The study will depict the dissonance level and their variations among the foresaid initiatives from the former employees and the post-employment dissonance from the present employees in IT SMEs and it will also examine the employer perception from the prospective employees towards the stated branding initiatives. The demographic factors such as generational factors (gen X and gen Y) and the career stages are majorly focused in the study. The study will promote the IT SMEs to strengthen their employer branding effectively and efficiently through implementing varied strategies and this will help them to enhance the talent pool at their best. This will eventually result in talent attraction and talent retention.

Keywords: employer image, organizational identity, post-employment dissonance, job offer attributes, organizational attractiveness, talent pool, career stages, generational factors, information technology, SMEs

Procedia PDF Downloads 496
952 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76
951 The Role of Education and Indigenous Knowledge in Disaster Preparedness

Authors: Sameen Masood, Muhammad Ali Jibran

Abstract:

The frequent flood history in Pakistan has pronounced the need for disaster risk management. Various policies are formulated and steps are being taken by the government in order to cope with the flood effects. However, a much promising pro-active approach that is globally acknowledged is educating the masses regarding living with risk and uncertainty. Unfortunately, majority of the flood victims in Pakistan are poor and illiterate which also transpires as a significant cause of their distress. An illiterate population is not risk averse or equipped intellectually regarding how to prepare and protect against natural disasters. The current research utilizes a cross-disciplinary approach where the role of education (both formal and informal) and indigenous knowledge is explored with reference to disaster preparedness. The data was collected from the flood prone rural areas of Punjab. In the absence of disaster curriculum taught in formal schools, informal education disseminated by NGOs and relief and rehabilitation agencies was the only education given to the flood victims. However the educational attainment of flood victims highly correlated with their awareness regarding flood management and disaster preparedness. Moreover, lessons learned from past flood experience generated indigenous knowledge on the basis of which flood victims prepared themselves for any uncertainty. If the future policy regarding disaster preparation integrates indigenous knowledge and then delivers education on the basis of that, it is anticipated that the flood devastations can be much reduced. Education can play a vital role in amplifying perception of risk and taking precautionary measures for disaster. The findings of the current research will provide practical strategies where disaster preparedness through education has not yet been applied.

Keywords: education, disaster preparedness, illiterate population, risk management

Procedia PDF Downloads 486
950 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics

Authors: L. Freeborn

Abstract:

Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.

Keywords: neuroimaging studies, research design, second language acquisition, task validity

Procedia PDF Downloads 138
949 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 80
948 A Behavioral Approach of Impulse Buying: Application to Algerian Food Stores

Authors: Amel Graa, Maachou Dani El Kebir

Abstract:

This paper investigates the impulse buying behavior of Algerian consumer. In that purpose, we try to better understand processes underlying impulsive buying experiences by examining the theoretical framework and using Mehrabian and Russell’s structure. A model is then proposed and tested on a sample of 1500 shoppers who were recruited among customers of food stores. This model aims to explain the role of some situational variables, personal variables, variables linked to the product characteristics and emotional states on the impulse buying behavior. Following to this empirical study, it was possible to conclude that Algerian consumer has a weak tendency toward impulse buying of food products. The results indicate that seller guidance has a significant impact on the impulse buying, whereas the price of the product was negatively related. According to the results; perception of crowding was associated with scarcity and it was positively linked with impulse buying behavior. This study can help marketers determine the in-store factors that impact purely spontaneous purchases of items that otherwise would not end up in the shopping cart. Our research findings offer important information for benchmarking managerial expectations with regard to product selection and merchandising decisions. As futures perspectives, we propose new research areas related to the impulse buying behavior such as studying different types of stores (for example supermarket), or other types of product (clothing), or studying consumption of food products in religious month of Muslims (Ramadan).

Keywords: impulse buying, situational variables, personal variables, emotional states, PAD model of Merhabian and Russell, Algerian consumer

Procedia PDF Downloads 420
947 Architectural Experience of the Everyday in Bangkok CBD

Authors: Thirayu Jumsai Na Ayudhya

Abstract:

The attempt to understand about what architecture means to people as they go about their everyday life revealed that knowledge such as environmental psychology, environmental perception, environmental aesthetics, inadequately address the contextualized and holistic theoretical framework. In my previous research, it was found that people’s making senses of their everyday architecture can be addressed in terms of four super‐ordinate themes; (1) building in urban (text), (2) building in (text), (3) building in human (text), (4) and building in time (text). In this research, Bangkok CBD was selected as the focal urban context that the integrated style of architecture is noticeable. It is expected that in a unique urban context like Bangkok CBD unprecedented super-ordinate themes will be unveiled through the reflection of people’s everyday experiences. In this research, people’s architectural experience conducted in Bangkok CBD, Thailand, will be presented succinctly. The research addresses the question of how do people make sense of their everyday architecture/buildings especially in a unique urban context, Bangkok CBD, and identifies ways in which people make sense of their everyday architecture. Two key methodologies are adopted. First, Participant-Produced-Photograph (PPP) allows people to express their experiences of the everyday urban context freely without any interference or forced-data generating by researchers. Second, Interpretative Phenomenological Analysis (IPA) are also applied as main methodologies. With IPA methodology, a small pool of participants is considered giving the detailed level of analysis and its potential to produce a meaningful outcome.

Keywords: architectural experience, building appreciation, design psychology, environmental psychology, sense-making, the everyday experience, transactional theory

Procedia PDF Downloads 336
946 Students’ Perceptions and Attitudes for Integrating ICube Technology in the Solar System Lesson

Authors: Noran Adel Emara, Elham Ghazi Mohammad

Abstract:

Qatar University is engaged in a systemic education reform that includes integrating the latest and most effective technologies for teaching and learning. ICube is high-immersive virtual reality technology is used to teach educational scenarios that are difficult to teach in real situations. The trends toward delivering science education via virtual reality applications have accelerated in recent years. However, research on students perceptions of integrating virtual reality especially ICube technology is somehow limited. Students often have difficulties focusing attention on learning science topics that require imagination and easily lose attention and interest during the lesson. The aim of this study was to examine students’ perception of integrating ICube technology in the solar system lesson. Moreover, to explore how ICube could engage students in learning scientific concept of the solar system. The research framework included the following quantitative research design with data collection and analysis from questionnaire results. The solar system lesson was conducted by teacher candidates (Diploma students) who taught in the ICube virtual lab in Qatar University. A group of 30 students from eighth grade were randomly selected to participate in the study. Results showed that the students were extremely engaged in learning the solar system and responded positively to integrating ICube in teaching. Moreover, the students showed interest in learning more lessons through ICube as it provided them with valuable learning experience about complex situations.

Keywords: ICube, integrating technology, science education, virtual reality

Procedia PDF Downloads 302