Search results for: module based teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33476

Search results for: module based teaching and learning

30656 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 187
30655 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 205
30654 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)

Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare

Abstract:

During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.

Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS

Procedia PDF Downloads 168
30653 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 112
30652 Design of Intelligent Scaffolding Learning Management System for Vocational Education

Authors: Seree Chadcham, Niphon Sukvilai

Abstract:

This study is the research and development which is intended to: 1) design of the Intelligent Scaffolding Learning Management System (ISLMS) for vocational education, 2) assess the suitability of the Design of Intelligent Scaffolding Learning Management System for Vocational Education. Its methods are divided into 2 phases. Phase 1 is the design of the ISLMS for Vocational Education and phase 2 is the assessment of the suitability of the design. The samples used in this study are work done by 15 professionals in the field of Intelligent Scaffolding, Learning Management System, Vocational Education, and Information and Communication Technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ISLMS for vocational education consists of 2 main components which are: 1) the Intelligent Learning Management System for Vocational Education, 2) the Intelligent Scaffolding Management System. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: intelligent, scaffolding, learning management system, vocational education

Procedia PDF Downloads 800
30651 Assessment of E-learning Facilities and Information Need by Open and Distance Learning Students in Jalingo, Nigeria

Authors: R. M. Bashir, Sabo Elizabeth

Abstract:

Electronic learning is an increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. An investigation on the assessment of e-learning facilities and information need by open and distance learning students in Jalingo, Nigeria was conducted. Structured questionnaires were administered to 70 students of the university. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Information on assessment of e-learning facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women, a large proportion of the respondents are married and there are more matured students. A high proportion of the students obtained qualifications higher than the secondary school certificate. The proportion of computer literate students was higher compared with those students that owned a computer. Inadequate e-books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities. Inadequate computer facilities caused delay in examination schedule at the study center. Open and distance learning students required to a high extent information on university timetable and schedule of activities, books (hard and e-books) and reference materials and contact with course coordinators via internet for better learning and academic performance.

Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test

Procedia PDF Downloads 293
30650 MEMS based Vibration Energy Harvesting: An overview

Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant

Abstract:

The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.

Keywords: energy harvesting, WSN, MEMS, piezoelectrics

Procedia PDF Downloads 506
30649 Written Narrative Texts as the Indicators of Communication Competence of Pupils and Students with Hearing Impairment in the Czech Language

Authors: Marie Komorna, Katerina Hadkova

Abstract:

One reason why hearing disabilities as compared to other disabilities are considered to be less serious, is the belief that deaf and hard of hearing persons can read and write without problems and can therefore fairly easily compensate for problems related to their limited ability to hear sound. However in reality this is not the case, especially as regards written Czech, deaf persons are often not able to communicate their message clearly to its recipients. Their inability to communicate fully in written language is one of the most severe problems facing a number of deaf persons, a problem which they face and which makes it difficult for them to function in a sound-based environment. Despite this fact, this issue is one which has been given only a minimum of attention in the Czech Republic. That is why we decided to focus our research on this issue, specifically targeting written communication of deaf pupils in primary and secondary schools. The paper summarizes the background and objectives of this research. The written work of deaf respondents was obtained in response to a narrative based on a series of images which depicted a continuous storyline. Based on an analysis of the obtained written work we tried to describe the specifics of the narrative abilities of the deaf authors of these texts. We also analyzed other aspects and specific traits of text written by deaf authors at a phonetic-phonological, lexical-semantic, morphological and syntactic, respectively pragmatic level. Based on the results of the project it will be possible to increase knowledge of the communication abilities of deaf persons in written Czech. The obtained data may be used during future research and for teaching purposes and/or education concepts for teaching Czech to deaf pupils.

Keywords: communication competence, deaf, narrative, written texts

Procedia PDF Downloads 340
30648 Examining the Teaching and Learning Needs of Science and Mathematics Educators in South Africa

Authors: M. Shaheed Hartley

Abstract:

There has been increasing pressure on education researchers and practitioners at higher education institutions to focus on the development of South Africa’s rural and peri-urban communities and improving their quality of life. Many tertiary institutions are obliged to review their outreach interventions in schools. To ensure that the support provided to schools is still relevant, a systemic evaluation of science educator needs is central to this process. These prioritised needs will serve as guide not only for the outreach projects of tertiary institutions, but also to service providers in general so that the process of addressing educators needs become coordinated, organised and delivered in a systemic manner. This paper describes one area of a broader needs assessment exercise to collect data regarding the needs of educators in a district of 45 secondary schools in the Western Cape Province of South Africa. This research focuses on the needs and challenges faced by science educators at these schools as articulated by the relevant stakeholders. The objectives of this investigation are two-fold: (1) to create a data base that will capture the needs and challenges identified by science educators of the selected secondary schools; and (2) to develop a needs profile for each of the participating secondary schools that will serve as a strategic asset to be shared with the various service providers as part of a community of practice whose core business is to support science educators and science education at large. The data was collected by a means of a needs assessment questionnaire (NAQ) which was developed in both actual and preferred versions. An open-ended questionnaire was also administered which allowed teachers to express their views. The categories of the questionnaire were predetermined by participating researchers, educators and education department officials. Group interviews were also held with the science teachers at each of the schools. An analysis of the data revealed important trends in terms of science educator needs and identified schools that can be clustered around priority needs, logistic reasoning and educator profiles. The needs database also provides opportunity for the community of practice to strategise and coordinate their interventions.

Keywords: needs assessment, science and mathematics education, evaluation, teaching and learning, South Africa

Procedia PDF Downloads 186
30647 A Novel Exploration/Exploitation Policy Accelerating Learning In Both Stationary And Non Stationary Environment Navigation Tasks

Authors: Wiem Zemzem, Moncef Tagina

Abstract:

In this work, we are addressing the problem of an autonomous mobile robot navigating in a large, unknown and dynamic environment using reinforcement learning abilities. This problem is principally related to the exploration/exploitation dilemma, especially the need to find a solution letting the robot detect the environmental change and also learn in order to adapt to the new environmental form without ignoring knowledge already acquired. Firstly, a new action selection strategy, called ε-greedy-MPA (the ε-greedy policy favoring the most promising actions) is proposed. Unlike existing exploration/exploitation policies (EEPs) such as ε-greedy and Boltzmann, the new EEP doesn’t only rely on the information of the actual state but also uses those of the eventual next states. Secondly, as the environment is large, an exploration favoring least recently visited states is added to the proposed EEP in order to accelerate learning. Finally, various simulations with ball-catching problem have been conducted to evaluate the ε-greedy-MPA policy. The results of simulated experiments show that combining this policy with the Qlearning method is more effective and efficient compared with the ε-greedy policy in stationary environments and the utility-based reinforcement learning approach in non stationary environments.

Keywords: autonomous mobile robot, exploration/ exploitation policy, large, dynamic environment, reinforcement learning

Procedia PDF Downloads 421
30646 The Relationships between Autonomy-Based Insula Activity and Learning: A Functional Magnetic Resonance Imaging Study

Authors: Woogul Lee, Johnmarshall Reeve

Abstract:

Learners’ perceived autonomy predicts learners’ interest, engagement, and learning. To understand these processes, we conducted an fMRI experiment. In this experiment, participants saw the national flag and were asked to rate how much they freely wanted to learn about that particular national flag. The participants then learned the characteristics of the national flag. Results showed that (1) the degree of participants’ perceived autonomy was positively correlated with the degree of insula activity, (2) participants’ early-trial insula activity predicted corresponding late-trial dorsolateral prefrontal cortex activity, and (3) the degree of dorsolateral prefrontal cortex activity was positively correlated with the degree of participants’ learning about the characteristics of the national flag. Results suggest that learners’ perceived autonomy predicts learning through the mediation of insula activity associated with intrinsic satisfaction and 'pure self' processes.

Keywords: insular cortex, autonomy, self-determination, dorsolateral prefrontal cortex

Procedia PDF Downloads 207
30645 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University

Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman

Abstract:

Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.

Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning

Procedia PDF Downloads 512
30644 Simulation of Cybersecurity Attacks and Detection Using Machine Learning Techniques with Virtual Local Area Networks Integration

Authors: Sankenth Jalwad, Satyam, Suteerth Kalkeri, Vidula L. S., Geetha Dayalan

Abstract:

In today’s cyber landscape, threats are emerging every single day; they are much more advanced and dynamic than in the past within this cyber landscape. This project focuses on Virtual Local Area Networks or VLANs. VLANs provide the compartmentalization of sensitive information and optimal management of traffic but introduce specific vulnerabilities. Attackers also target VLAN configurations for exploitation of some security holes, such as VLAN hopping. The aim is to deal with such security requirements by developing a machine learning-based IDS for the VLAN environment that identifies in real time the patterns and anomalies signifying possible attacks. Apart from the IDS, it also looks at the generation of cyberattack datasets specific to VLANs with the help of Wireshark that will help train the ML model.

Keywords: cybersecurity, machine learning, VLAN networks, DTP, STP

Procedia PDF Downloads 11
30643 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris

Authors: Suhani Srivastava

Abstract:

This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.

Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa

Procedia PDF Downloads 29
30642 Adult Learners’ Code-Switching in the EFL Classroom: An Analysis of Frequency and Type of Code-Switching

Authors: Elizabeth Patricia Beck

Abstract:

Stepping into various English as foreign language classrooms, one will see some fundamental similarities. There will likely be groups of students working collaboratively, possibly sitting at tables together. They will be using a set coursebook or photocopies of materials developed by publishers or the teacher. The teacher will be carefully monitoring students’ behaviour and progress. The teacher will also likely be insisting that the students only speak English together, possibly having implemented a complex penalty and award systems to encourage this. This is communicative language teaching and it is commonly how foreign languages are taught around the world. Recently, there has been much interest in the codeswitching behaviour of learners in foreign or second language classrooms. It is a significant topic as it relates to second language acquisition theory, language teaching training and policy, and student expectations and classroom practice. Generally in an English as a foreign language context, an ‘English Only’ policy is the norm. This is based on historical factors, socio-political influence and theories surrounding language learning. The trend, however, is shifting and, based on these same factors, a re-examination of language use in the foreign language classroom is taking place. This paper reports the findings of an examination into the codeswitching behaviour of learners with a shared native language in an English classroom. Specifically, it addresses the question of classroom code-switching by adult learners in the EFL classroom during student-to-student, spoken interaction. Three generic categories of code switching are proposed based on published research and classroom practice. Italian adult learners at three levels were observed and patterns of language use were identified, recorded and analysed using the proposed categories. After observations were completed, a questionnaire was distributed to the students focussing on attitudes and opinions around language choice in the EFL classroom, specifically, the usefulness of L1 for specific functions in the classroom. The paper then investigates the relationship between learners’ foreign language proficiency and the frequency and type of code-switching that they engaged in, and the relationship between learners’ attitudes to classroom code-switching and their behaviour. Results show that code switching patterns underwent changes as the students’ level of English language proficiency improved, and that students’ attitudes towards code-switching generally correlated with their behaviour with some exceptions, however. Finally, the discussion focusses on the details of the language produced in observation, possible influencing factors that may affect the frequency and type of code switching that took place, and additional influencing factors that may affect students’ attitudes towards code switching in the foreign language classroom. An evaluation of the limitations of this study is offered and some suggestions are made for future research in this field of study.

Keywords: code-switching, EFL, second language aquisition, adult learners

Procedia PDF Downloads 280
30641 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.

Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect

Procedia PDF Downloads 246
30640 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 145
30639 An Evaluation of a First Year Introductory Statistics Course at a University in Jamaica

Authors: Ayesha M. Facey

Abstract:

The evaluation sought to determine the factors associated with the high failure rate among students taking a first-year introductory statistics course. By utilizing Tyler’s Objective Based Model, the main objectives were: to assess the effectiveness of the lecturer’s teaching strategies; to determine the proportion of students who attends lectures and tutorials frequently and to determine the impact of infrequent attendance on performance; to determine how the assigned activities assisted in students understanding of the course content; to ascertain the possible issues being faced by students in understanding the course material and obtain possible solutions to the challenges and to determine whether the learning outcomes have been achieved based on an assessment of the second in-course examination. A quantitative survey research strategy was employed and the study population was students enrolled in semester one of the academic year 2015/2016. A convenience sampling approach was employed resulting in a sample of 98 students. Primary data was collected using self-administered questionnaires over a one-week period. Secondary data was obtained from the results of the second in-course examination. Data were entered and analyzed in SPSS version 22 and both univariate and bivariate analyses were conducted on the information obtained from the questionnaires. Univariate analyses provided description of the sample through means, standard deviations and percentages while bivariate analyses were done using Spearman’s Rho correlation coefficient and Chi-square analyses. For secondary data, an item analysis was performed to obtain the reliability of the examination questions, difficulty index and discriminant index. The examination results also provided information on the weak areas of the students and highlighted the learning outcomes that were not achieved. Findings revealed that students were more likely to participate in lectures than tutorials and that attendance was high for both lectures and tutorials. There was a significant relationship between participation in lectures and performance on examination. However, a high proportion of students has been absent from three or more tutorials as well as lectures. A higher proportion of students indicated that they completed the assignments obtained from the lectures sometimes while they rarely completed tutorial worksheets. Students who were more likely to complete their assignments were significantly more likely to perform well on their examination. Additionally, students faced a number of challenges in understanding the course content and the topics of probability, binomial distribution and normal distribution were the most challenging. The item analysis also highlighted these topics as problem areas. Problems doing mathematics and application and analyses were their major challenges faced by students and most students indicated that some of the challenges could be alleviated if additional examples were worked in lectures and they were given more time to solve questions. Analysis of the examination results showed that a number of learning outcomes were not achieved for a number of topics. Based on the findings recommendations were made that suggested adjustments to grade allocations, delivery of lectures and methods of assessment.

Keywords: evaluation, item analysis, Tyler’s objective based model, university statistics

Procedia PDF Downloads 193
30638 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 33
30637 Investigating Secondary Students’ Attitude towards Learning English

Authors: Pinkey Yaqub

Abstract:

The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.

Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude

Procedia PDF Downloads 230
30636 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 99
30635 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis

Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk

Abstract:

The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.

Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing

Procedia PDF Downloads 161
30634 'How to Change Things When Change is Hard' Motivating Libyan College Students to Play an Active Role in Their Learning Process

Authors: Hameda Suwaed

Abstract:

Group work, time management and accepting others' opinions are practices rooted in the socio-political culture of democratic nations. In Libya, a country transitioning towards democracy, what is the impact of encouraging college students to use such practices in the English language classroom? How to encourage teachers to use such practices in educational system characterized by using traditional methods of teaching? Using action research and classroom research gathered data; this study investigates how teachers can use education to change their students' understanding of their roles in their society by enhancing their belonging to it. This study adjusts a model of change that includes giving students clear directions, sufficient motivation and supportive environment. These steps were applied by encouraging students to participate actively in the classroom by using group work and variety of activities. The findings of the study showed that following the suggested model can broaden students' perception of their belonging to their environment starting with their classroom and ending with their country. In conclusion, although this was a small scale study, the students' participation in the classroom shows that they gained self confidence in using practices such as group work, how to present their ideas and accepting different opinions. What was remarkable is that most students were aware that is what we need in Libya nowadays.

Keywords: educational change, students' motivation, group work, foreign language teaching

Procedia PDF Downloads 424
30633 Modeling Child Development Factors for the Early Introduction of ICTs in Schools

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.

Keywords: child development factors, child development theories, ICTs, theory

Procedia PDF Downloads 417
30632 Study Skills Empowering Strategies to Enhance Second Year Diploma Accountancy Students’ Academic Performance

Authors: Mohamed Karodia

Abstract:

Accountancy as a subject is one of the sciences that for many years has been perceived as a difficult subject to study and teach. Yet, it continuously attracts scholars graduating from school and entering Higher Education Institutions as a subject of choice and career. The teaching and learning of this subject have not been easy and has evolved and progressed over the past few decades however students still find it difficult to study and this has resulted in poor student achievement. In search of solutions, this study has considered the effect and efficacy that study skills have on the performance of Accountancy students and in particular students studying Second Year Diploma in Accountancy at the University of Johannesburg. These students appear to have a lack of appropriate study skills and as a result of these impacts on their performance in the courses, they are studying. This study also focuses on strategies to enhance Second Year Diploma Accountancy students’ academic performance. A literature review was conducted to investigate what scholarly literature suggests about study skills, in general, and in particular for Accountancy to be successful. In order to determine what study skills Second Year Accountancy students are applying when they learn and why they are failing the Accountancy examinations and formal class tests, the study adopted the quantitative research method. A questionnaire addressing various aspects of study skills, studying accountancy and studying, in general, was provided to 800 students studying Second Year Diploma in Accountancy at the University of Johannesburg’s Soweto Campus. The quantitative data collected were analyzed using descriptive statistics in the form of proportions, frequencies, means, and standard deviations, t-tests to compare differences between two groups as well as correlations between variables. Based on the findings of this study, it is recommended that students are provided with courses in time management, procrastination, reading, note taking and writing, test preparation techniques as well as study attitude. Lecturers spend more time teaching students how to study in general as well as accountancy specifically preferably at the first-year level before proceeding to the second year. It is also recommended that the University implements a study skills course to assist the students with studying.

Keywords: accountancy, skills, strategies, study

Procedia PDF Downloads 135
30631 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 235
30630 Peace through Language Policy as a Solution to the Ethnic Conflict in Sri Lanka

Authors: R. M. W. Rajapakshe

Abstract:

Sri Lanka, which is officially called the Democratic Socialist Republic of Sri Lanka is an island nation situated near India. It is a multi-lingual, multi- religious and multi – ethnic country, where Sinhalese form the majority and the Tamils form the largest ethnic minority. The composition of the population (ethnic basis) in Sri Lanka is as follows: Sinhalese: 74.5%, Tamil (Sri Lankan): 12.6%, Muslim: 7.5 %, Tamil (Indian): 5.5%, Malay: 0.3%, Burgher: 0.3 %, other: 0.2 %. The Tamil people use the Tamil language as their mother tongue and the Sinhala people use the Sinhala language as their mother tongue. A very few people in both communities use English as their mother tongue and however, a large number of people use English as a second language. The Sinhala Language was declared the only official language in Sri Lanka in 1959. However, it was not acceptable to Tamil politicians as well as to the common Tamil people and it was the beginning of long standing ethnic crisis which later became a military war where a lot of blood was shed. As a solution to the above ethnic crisis the thirteenth amendment to the constitution of Sri Lanka was introduced in 1987 and according to it both Sinhala and Tamil were declared official languages and English as the link language in Sri Lanka. Thus, a new programme namely, second language teaching programme under which Sinhala was taught to Tamil students and Tamil was taught to Sinhala students, was introduced at government schools. Language teaching includes knowledge of the culture of the target language. As all cultures are mixed and have common features students have reduced their enmity about the other community and learned to respect the other culture. On the other hand as all languages are mixed, students came to the understanding that there are no pure languages. Thus, they learned to respect the other language. In the case of Sri Lanka the Sinhala language is mixed with the Tamil language and vice versa. Thus, the development of second language teaching is the prominent way to solve the above ethnic problem and this study clearly shows it. However, the above programme suffers with lack of trained second language teachers, infrastructure facilities and insufficient funds and, they can be considered as the main obstacles to develop the second language teaching programme. Yet, there are no satisfactory answers to those problems. The data were collected from relevant books, articles and other documents based on research and forty five recordings, each with one hour duration, of natural conversations covering all factions of the Sinhala community.

Keywords: ethnic crisis, official language, second language teaching, Sinhala, Tami

Procedia PDF Downloads 347
30629 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 157
30628 Educational Video Capsules for Fostering Teachers Creativity

Authors: Martha Salinas, Valkyria Bernal

Abstract:

Creativity is a possible response to the profound social, economic, and global changes society is living and education is the source to develop this kind of capacity. However, institutional pressures often prevent teachers from engaging in creative teaching practices and make innovation not the main curricular focus when building learning scenarios and experiences. This study proposes and validates the use of a prototype of Educative Video – Capsules from the perspective of teacher training, presenting the different stages of design, the content plan, as well as the influences of its components and characteristics from the perspective of creativity. The paper presents literature findings of the factors that influence the innovative behavior of teachers, the beliefs of teachers about creativity and its nature, as well as the creative pedagogies that have generated better results. The results show that the disposition of teachers towards creative pedagogies improves significantly with the use of a tool that is based on the principles of microlearning and is developed in a non-academic, autonomous, and non-imposed family environment as traditional teacher training processes usually occur.

Keywords: educational innovation, resistance to innovation, creativity, creative pedagogy

Procedia PDF Downloads 161
30627 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 90