Search results for: offensive language detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7163

Search results for: offensive language detection

4373 The Use of Corpora in Improving Modal Verb Treatment in English as Foreign Language Textbooks

Authors: Lexi Li, Vanessa H. K. Pang

Abstract:

This study aims to demonstrate how native and learner corpora can be used to enhance modal verb treatment in EFL textbooks in mainland China. It contributes to a corpus-informed and learner-centered design of grammar presentation in EFL textbooks that enhances the authenticity and appropriateness of textbook language for target learners. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the 'secondary school' section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was analyzed in terms of the use (distributional features, semantic functions, and co-occurring constructions) and the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The analysis of distribution indicates several discrepancies between the textbook corpus and BNCS2014. The first four most frequent modal verbs in BNCS2014 are can, would, will, could, while can, will, should, could are the top four in the textbooks. Most strikingly, there is an unusually high proportion of can (41.1%) in the textbooks. The results on different meanings shows that will, would and must are the most problematic. For example, for will, the textbooks contain 20% more occurrences of 'volition' and 20% less of 'prediction' than those in BNCS2014. Regarding co-occurring structures, the textbooks over-represented the structure 'modal +do' across the nine modal verbs. Another major finding is that the structure of 'modal +have done' that frequently co-occur with could, would, should, and must is underused in textbooks. Besides, these four modal verbs are the most difficult for learners, as the error analysis shows. This study demonstrates how the synergy of native and learner corpora can be harnessed to improve EFL textbook presentation of modal verbs in a way that textbooks can provide not only authentic language used in natural discourse but also appropriate design tailed for the needs of target learners.

Keywords: English as Foreign Language, EFL textbooks, learner corpus, modal verbs, native corpus

Procedia PDF Downloads 143
4372 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
4371 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment

Authors: Can Mungan, Gokhan Kilic

Abstract:

Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.

Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position

Procedia PDF Downloads 119
4370 A Comparative Analysis of (De)legitimation Strategies in Selected African Inaugural Speeches

Authors: Lily Chimuanya, Ehioghae Esther

Abstract:

Language, a versatile and sophisticated tool, is fundamentally sacrosanct to mankind especially within the realm of politics. In this dynamic world, political leaders adroitly use language to engage in a strategic show aimed at manipulating or mechanising the opinion of discerning people. This nuanced synergy is marked by different rhetorical strategies, meticulously synced with contextual factors ranging from cultural, ideological, and political to achieve multifaceted persuasive objectives. This study investigates the (de)legitimation strategies inherent in African presidential inaugural speeches, as African leaders not only state their policy agenda through inaugural speeches but also subtly indulge in a dance of legitimation and delegitimation, performing a twofold objective of strengthening the credibility of their administration and, at times, undermining the performance of the past administration. Drawing insights from two different legitimation models and a dataset of 4 African presidential inaugural speeches obtained from authentic websites, the study describes the roles of authorisation, rationalisation, moral evaluation, altruism, and mythopoesis in unmasking the structure of political discourse. The analysis takes a mixed-method approach to unpack the (de)legitimation strategy embedded in the carefully chosen speeches. The focus extends beyond a superficial exploration and delves into the linguistic elements that form the basis of presidential discourse. In conclusion, this examination goes beyond the nuanced landscape of language as a potent tool in politics, with each strategy contributing to the overall rhetorical impact and shaping the narrative. From this perspective, the study argues that presidential inaugural speeches are not only linguistic exercises but also viable weapons that influence perceptions and legitimise authority.

Keywords: CDA, legitimation, inaugural speeches, delegitmation

Procedia PDF Downloads 69
4369 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method

Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama

Abstract:

Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.

Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics

Procedia PDF Downloads 112
4368 Wireless Sensor Network for Forest Fire Detection and Localization

Authors: Tarek Dandashi

Abstract:

WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.

Keywords: forest fire, WSN, wireless sensor network, algortihm

Procedia PDF Downloads 262
4367 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini

Abstract:

This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter

Procedia PDF Downloads 148
4366 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 318
4365 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 348
4364 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
4363 Detection of Hepatitis B by the Use of Artifical Intelegence

Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad

Abstract:

Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.

Keywords: detection, hapataties, observation, disesese

Procedia PDF Downloads 156
4362 Requests and Responses to Requests in Jordanian Arabic

Authors: Raghad Abu Salma, Beatrice Szczepek Reed

Abstract:

Politeness is one of the most researched areas in pragmatics as it is key to interpersonal interactional phenomena. Many studies, particularly in linguistics, have focused on developing politeness theories and exploring linguistic devices used in communication to construct and establish social norms. However, the question of what constitutes polite language remains a point of ongoing debate. Prior research primarily examined politeness in English and its native speaking communities, oversimplifying the notion of politeness and associating it with surface-level language use. There is also a dearth of literature on politeness in Arabic, particularly in the context of Jordanian Arabic. Prior research investigating politeness in Arabic make generalized claims about politeness in Arabic without taking the linguistic variations into account or providing empirical evidence. This proposed research aims to explore how Jordanian Arabic influences its first language users in making and responding to requests, exploring participants' perceptions of politeness and the linguistic choices they make in their interactions. The study focuses on Jordanian expats living in London, UK providing an intercultural perspective that prior research does not consider. This study employs a mixed-methods approach combining discourse completion tasks (DCTs) with semi-structured interviews. While DCTs provide insight into participants’ linguistic choices, semi-structured interviews glean insight into participants' perceptions of politeness and their linguistic choices impacted by cultural norms and diverse experiences. This paper discusses previous research on politeness in Arabic, identifies research gaps, and discusses different methods for data collection. This paper also presents preliminary findings from the ongoing study.

Keywords: politeness, pragmatics, jordanian arabic, intercultural politeness

Procedia PDF Downloads 79
4361 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 345
4360 Assessment of E-Portfolio on Teacher Reflections on English Language Education

Authors: Hsiaoping Wu

Abstract:

With the wide use of Internet, learners are exposed to the wider world. This exposure permits learners to discover new information and combine a variety of media in order to reach in-depth and broader understanding of their literacy and the world. Many paper-based teaching, learning and assessment modalities can be transferred to a digital platform. This study examines the use of e-portfolios for ESL (English as a second language) pre-service teacher. The data were collected by reviewing 100 E-portfolio from 2013 to 2015 in order to synthesize meaningful information about e-portfolios for ESL pre-service teachers. Participants were generalists, bilingual and ESL pre-service teachers. The studies were coded into two main categories: learning gains, including assessment, and technical skills. The findings showed that using e-portfolios enhanced and developed ESL pre-service teachers’ teaching and assessment skills. Also, the E-portfolio also developed the pre-service teachers’ technical stills to prepare a comprehensible portfolio to present who they are. Finally, the study and presentation suggested e-portfolios for ecological issues and educational purposes.

Keywords: assessment, e-portfolio, pre-service teacher, reflection

Procedia PDF Downloads 317
4359 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 349
4358 Analyzing Apposition and the Typology of Specific Reference in Newspaper Discourse in Nigeria

Authors: Monday Agbonica Bello Eje

Abstract:

The language of the print media is characterized by the use of apposition. This linguistic element function strategically in journalistic discourse where it is communicatively necessary to name individuals and provide information about them. Linguistic studies on the language of the print media with bias for apposition have largely dwelt on other areas but the examination of the typology of appositive reference in newspaper discourse. Yet, it is capable of revealing ways writers communicate and provide information necessary for readers to follow and understand the message. The study, therefore, analyses the patterns of appositional occurrences and the typology of reference in newspaper articles. The data were obtained from The Punch and Daily Trust Newspapers. A total of six editions of these newspapers were collected randomly spread over three months. News and feature articles were used in the analysis. Guided by the referential theory of meaning in discourse, the appositions identified were subjected to analysis. The findings show that the semantic relation of coreference and speaker coreference have the highest percentage and frequency of occurrence in the data. This is because the subject matter of news reports and feature articles focuses on humans and the events around them; as a result, readers need to be provided with some form of detail and background information in order to identify as well as follow the discourse. Also, the non-referential relation of absolute synonymy and speaker synonymy no doubt have fewer occurrences and percentages in the analysis. This is tied to a major feature of the language of the media: simplicity. The paper concludes that appositions is mainly used for the purpose of providing the reader with much detail. In this way, the writer transmits information which helps him not only to give detailed yet concise descriptions but also in some way help the reader to follow the discourse.

Keywords: apposition, discourse, newspaper, Nigeria, reference

Procedia PDF Downloads 174
4357 Exploring the Use of Discourse Markers by American Male and Female Politicians: A Corpus Based Study

Authors: Gohar Rahman, Rabia Saad Ullah

Abstract:

This research aims to examine the use of discourse markers within the dominion of political speeches, differentiating between genders. The analysis centers on twelve speakers, comprising six males and six females. Speeches selected include commencement, victory, state union addresses, campaigns, and presidential speeches. Halliday and Hasan's cohesion framework, specifically discourse markers, is utilized as a theoretical framework. Data is quantitatively analyzed using AntConc to identify marker frequency. The findings are presented through Excel's tables and graphs, suggesting differences in discourse marker preferences between genders. The findings suggest a divergence in the preferences for discourse markers between males and females. However, asserting that females utilize discourse markers more frequently due to the increased use of filler words, face threat mitigation, and polite speech would be an exaggeration. The disparity in frequency is not substantial, suggesting that males and females exhibit varying language inclinations to some degree.

Keywords: discourse markers, political discourse, gender, speeches, language

Procedia PDF Downloads 57
4356 Rapid Detection and Differentiation of Camel Pox, Contagious Ecthyma and Papilloma Viruses in Clinical Samples of Camels Using a Multiplex PCR

Authors: A. I. Khalafalla, K. A. Al-Busada, I. M. El-Sabagh

Abstract:

Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. They may be caused by three distinct viruses: camelpox virus (CMPV), camel contagious ecthyma virus (CCEV) and camel papillomavirus (CAPV). These diseases are difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify CMPV and CCEV, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost- and time–saving benefits. In the present communication, we describe the development, optimization and validation a multiplex PCR assays able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets, and was applied to the detection of 110 tissue samples. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. In conclusion, this rapid, sensitive and specific assay is considered a useful method for identifying three important viruses in specimens from camels and as part of a molecular diagnostic regime.

Keywords: multiplex PCR, diagnosis, pox and pox-like diseases, camels

Procedia PDF Downloads 468
4355 A Critical Discourse Analysis of President Muhammad Buhari's Speeches

Authors: Joy Aworo-Okoroh

Abstract:

Politics is about trust and trust is challenged by the speaker’s ability to manipulate language before the electorate. Critical discourse analysis investigates the role of language in constructing social relationships between a political speaker and his audience. This paper explores the linguistic choices made by President Muhammad Buhari that enshrines his ideologies as well as the socio-political relations of power between him and Nigerians in his speeches. Two speeches of President Buhari –inaugural and Independence Day speeches are analyzed using Norman Fairclough’s perspective on Halliday’s Systemic functional grammar. The analysis is at two levels. The first level of analysis is the identification of transitivity and modality choices in the speeches and how they reveal the covert ideologies. The second analysis is premised on Normal Fairclough’s model, the clauses are analyzed to identify elements of power, hesistation, persuasion, threat and religious statement. It was discovered that Buhari is a dominant character who manipulates the material processes a lot.

Keywords: politics, critical discourse analysis, Norman Fairclough, systemic functional grammar

Procedia PDF Downloads 551
4354 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137

Authors: Abdulsalam M. Alhawsawi

Abstract:

Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.

Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137

Procedia PDF Downloads 117
4353 The Effect of Unconscious Exposure to Religious Concepts on Mutual Stereotypes of Jews and Muslims in Israel

Authors: Lipaz Shamoa-Nir, Irene Razpurker-Apfeld

Abstract:

This research examined the impact of subliminal exposure to religious content on the mutual attitudes of majority group members (Jews) and minority group members (Muslims). Participants were subliminally exposed to religious concepts (e.g., Mezuzah, yarmulke or veil) and then they filled questionnaires assessing their stereotypes towards the out-group members. Each participant was primed with either in-group religious concepts, out-group concepts or neutral ones. The findings show that the Muslim participants were not influenced by the religious content to which they were exposed while the Jewish participants perceived the Muslims as less 'hostile' when subliminally exposed to religious concepts, regardless of concept type (out-group/in-group). This research highlights the influence of evoked religious content on out-group attitudes even when the perceiver is unaware of prime content. The power that exposure to content in a non-native language has in activating attitudes towards the out-group is also discussed.

Keywords: intergroup attitudes, stereotypes, majority-minority, religious out-group, implicit content, native language

Procedia PDF Downloads 246
4352 Investigating the English Speech Processing System of EFL Japanese Older Children

Authors: Hiromi Kawai

Abstract:

This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.

Keywords: EFL older children, english segments, perception, production, speech processing system

Procedia PDF Downloads 243
4351 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia

Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy

Abstract:

Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.

Keywords: e-learning system, gamification, motivation, social comparison, visualization

Procedia PDF Downloads 153
4350 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
4349 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 134
4348 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach

Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude

Abstract:

This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.

Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability

Procedia PDF Downloads 370
4347 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 131
4346 Serological and Molecular Detection of Alfalfa Mosaic Virus in the Major Potato Growing Areas of Saudi Arabia

Authors: Khalid Alhudaib

Abstract:

Potato is considered as one of the most important and potential vegetable crops in Saudi Arabia. Alfalfa mosaic virus (AMV), genus Alfamovirus, family Bromoviridae is among the broad spread of viruses in potato. During spring and fall growing seasons of potato in 2015 and 2016, several field visits were conducted in the four major growing areas of potato cultivation (Riyadh-Qaseem-Hail-Hard). The presence of AMV was detected in samples using ELISA, dot blot hybridization and/or RT-PCR. The highest occurrence of AMV was observed as 18.6% in Qaseem followed by Riyadh with 15.2% while; the lowest infection rates were recorded in Hard and Hail, 8.3 and 10.4%, respectively. The sequences of seven isolates of AMV obtained in this study were determined and the sequences were aligned with the other sequences available in the GenBank database. Analyses confirmed the low variability among AMV isolated in this study, which means that all AMV isolates may originate from the same source. Due to high incidence of AMV, other economic susceptible crops may become affected by high incidence of this virus in potato crops. This requires accurate examination of potato seed tubers to prevent the spread of the virus in Saudi Arabia. The obtained results indicated that the hybridization and ELISA are suitable techniques in the routine detection of AMV in a large number of samples while RT-PCR is more sensitive and essential for molecular characterization of AMV.

Keywords: Alfamovirus, AMV, Alfalfa mosaic virus, PCR, potato

Procedia PDF Downloads 177
4345 A Picture Naming Study of European Portuguese-English Bilinguals on Cognates Switch Effects

Authors: Minghui Zou

Abstract:

This study investigates whether and how cognate status influences switching costs in bilingual language production. Two picture naming tasks will be conducted in this proposed study by manipulating the conditions of how cognates and non-cognates are presented, i.e., separately in two testing blocks vs intermixed in one single testing block. Participants of each experiment will be 24 L1-European Portuguese L2-English unbalanced speakers. Stimuli will include 12 pictures of cognate nouns and 12 of non-cognate nouns. It is hypothesized that there will be cognate switch facilitation effects among unbalanced bilinguals in both of their languages when stimuli are presented either in two single testing blocks or one mixed testing block. Shorter reaction times and higher naming accuracy are expected to be found in cognate switch trials than in non-cognate switch trials.

Keywords: cognates, language switching costs, picture naming, European Portuguese, cognate facilitation effect

Procedia PDF Downloads 38
4344 Single Item Presenteeism Question Reliability and Validity of Persian Version in Low Back Pain Patients

Authors: Mohammadreza Khanmohammadi, Noureddin Nakhostin Ansari, Soofia Naghdi

Abstract:

Purpose: Our study aimed to validate single item presenteeism question (SIPQ) into the Persian language for patients with low back pain. Background information: low back pain is a common health problem, and it is one of the most prevalent disorder in working people. There are the different subjective way to evaluate the effect of back pain on work productivity that one of them is by implementing single item presenteeism question. This question has not been validated into the Persian language. Method: Patients were asked to answer SIPQ and pain from 0 to 10 according to numerical rating scale (NRS). The functional rating index was administrated to evaluate construct validity. For test-retest reliability, almost 50 patients re-completed the Persian SIPQ. The construct validity of SIPQ was assessed by analyzing Spearman rank correlation between this question and the Persian version of Functional rating index questionnaire. To analyze test-retest reliability, we assessed intraclass correlation coefficient (agreement) (ICC agreement) (two-way random effects model, single measure). Results: The SIPQ score of two groups of patients (84 males, 16 females, mean age ±SD: 33.85±11.16 years, range: 19-67 years) and healthy subjects (48 male, 2 female ones, mean age ±SD: 24.24 ±8.07 years) was statistically significant. (Mann-Whitney U =198.00, P<.001). The Spearman correlation of data showed that there is a significant correlation between Persian SIPQ score and Persian FRI band (r= .559, P<.001). The ICC was .62. So, the analysis indicated good, test-retest reliability. Conclusion: This study showed that Persian version of SIPQ is reliable and valid when applied to back pain patients.

Keywords: cross cultural adaptation, economic burden, low back pain, Persian language, translation

Procedia PDF Downloads 411