Search results for: interorganizational learning
4437 Reinforcement Learning the Born Rule from Photon Detection
Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar
Abstract:
The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement
Procedia PDF Downloads 1094436 The Effectiveness of Using Nihongo Mantappu Channel on Youtube as an Effort to Succeed Sustainable Development Goals 2030 for Tenth Graders of Smam 10 GKB Gresik
Authors: Salsabila Meutia Meutia
Abstract:
Indonesia as one of the countries that agreed to SDG's must commit to achieve this SDG's goal until the deadline of 2030. The government has tried hard to realize all the goals in the SDG’s, but there is still something that has not been achieved, especially the goal in number 4 which is to ensure that every human being has a decent and inclusive education and encourages lifelong learning opportunities for everyone. Teenagers who are the golden generation for Indonesia are starting to feel dependent on Youtube. The addictive virus of teenagers about using YouTube is both good news and bad news for the sustainability of government programs in achieving goals in SDG’s, especially in term of education. One popular YouTube channel among high school teenagers is Nihongo Mantappu which has 1.8 million followers. This channel contains interesting but quality content that can have a positive influence for the audience. This research was conducted to determine the effectiveness of the Nihongo Mantappu channel on Youtube as a means of fostering enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB, as well as how it affected in achieving quality educational goals as an effort to succeed in the Sustainable Development Goals of 2030. The objectives of this study were carried out with distributing questionnaires to tenth graders of SMA Muhammadiyah 10 GKB and observing objects in the real life. Then the data obtained are analyzed and described properly so that this research is a descriptive study. The results of the study mentioned that YouTube as one of the websites for viewing and sharing videos is a very effective media for disseminating information, especially among teenagers. The Nihongo Mantappu channel is also considered to be a very effective channel in building enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB. Students as the main subject of education have a great influence on the achievement of one of SDG’s fourth goals, named quality education. Students who are always on fire in the spirit and awareness of learning will greatly help the achievement of quality education goals in the Sustainable Development Goals by 2030.Keywords: Youtube, Nihongo, Mantappu, SDG's
Procedia PDF Downloads 1344435 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 4204434 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio
Authors: Tamal Roy, Anuradha Bhat
Abstract:
Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.Keywords: algorithm, associative cue, habitat complexity, population, spatial learning
Procedia PDF Downloads 2884433 Inclusive Early Childhood Education and the Development of Children with Learning Disabilities in Ghana: Cultural-Historical Analysis
Authors: D. K. Kumador, E. A. Muthivhi
Abstract:
Historically, reforms in early childhood education in Ghana have focused narrowly on structural and pedagogical aspects with little attention paid to the broader sociocultural framework within which schooling and child development systems interact. This preliminary study investigates inclusive early childhood education within rapidly changing Ghanaian socio-cultural context, and its consequences for the development of children with learning disabilities. The study addresses an important topic, which is largely under-researched outside of Europe, North America, and Australasia. While inclusive education has been widely accepted globally at the level of policy, its implementation is uneven, as is shown in numerous studies across an array of countries and education systems. Despite this burgeoning area of research internationally, there have been far fewer studies conducted in African settings and fewer still that use cultural-historical activity theory as an investigative approach. More so, specific literature on the subject in the Ghanaian context is non-existent and, as such, coming to a deeper understanding of the sociocultural practices that shape, and possibly impede, inclusive early childhood education in an African country, Ghana, is a worthwhile research endeavour. Using cultural-historical activity theory as a methodological framework, this study employed classroom observations, and in-depth interviews and focus group discussions of preschool teachers in three kindergarten centres in the Greater Accra Region of Ghana to qualitatively explore inclusive early childhood education and the development of children with learning disabilities. The findings showed that literature from Ghana rarely discusses child informed consent as an on-going process that must be articulated throughout the research process from data collection to analysis, reporting and dissemination. Further, the study showed that the introduction and implementation of inclusive education framework – with its concomitant revisions in the curriculum, policies, and school rules, as well as enhanced community and parent involvement – into existing schooling practices, generated contradictions in inclusive teachers’ approaches to teaching and learning, and classroom management. Generally, contradictions in the understanding and acceptability of approaches to teaching and learning occur when a new way of doing things is incorporated into existing practices. These contradictions are thought to be a source of change and development. Thus, they guide teachers to unlearn outmoded practices, relearn or learn new approaches that are beneficial to the development of all children. Nonetheless, the findings of the current study showed that preschool teachers’ belief systems and perceptions of disabilities mediated the outcomes of such contradictions. Also, that was evidenced in the way they engaged children with learning disabilities compared to their typically developing counterparts, showing disregard for what was prescribed by new policies and school rules. The findings have implications for research with young children and the development outcomes of children with learning disabilities in inclusive early childhood education settings.Keywords: CHAT, classroom management, cultural-historical activity theory, ghana, inclusive early childhood education, schooling practices, young children with learning disabilities
Procedia PDF Downloads 1264432 Emerging Technologies in Distance Education
Authors: Eunice H. Li
Abstract:
This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.Keywords: distance education, e-learning technologies, pedagogy, generational models
Procedia PDF Downloads 4624431 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution
Authors: Zory Marantz
Abstract:
Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.Keywords: education, HyFlex, technology, urban, commuter, pedagogy
Procedia PDF Downloads 954430 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1014429 The Impact of Animal-Assisted Learning on Emotional Wellbeing and Engagement with Reading
Authors: Jill Steel
Abstract:
Introduction: Animal-assisted learning (AAL) interventions are increasing exponentially, yet a paucity of quality research in the field exists. The aim of this study was to evaluate how the promotion of emotional wellbeing, through AAL, in this case, a dog, may support children’s engagement with reading in a Primary 1 classroom. Research indicates that dogs can provide emotional support to children; by forming a trusting attachment with a non-critical ‘friend’ who confers unconditional positive regard on the child, confidence may be boosted and anxiety reduced. By promoting emotional wellbeing through interactions with the dog, it is hoped that children begin to associate reading with feelings of wellbeing, which then results in increased engagement with reading. Methodology: A review of the literature was conducted. The relationship between emotional wellbeing and learning was explored, followed by an examination of the literature relating to Animal-Assisted Therapy and AAL. Scottish educational policy and legislation were analysed to establish the extent to which AAL might be suitable for the Scottish pedagogical context. An empirical study was conducted in a mainstream Primary 1 classroom over a four-week period. An inclusive approach was adopted whereby all children that wanted to interact with the dog were given the opportunity to do so, and all 25 children subsequently chose to participate. Children were not withdrawn from the classroom. Primary methods included interviews, observations, and questionnaires. Three focus children were selected for closer study. Main Results: Results were remarkably close to previous research and literature. Children’s emotional wellbeing was boosted, and engagement in reading improved. Principal Conclusions and Implications for Field: It was concluded that AAL could support emotional wellbeing and, in turn, promote children’s engagement with reading. The main limitation of the study was its short-term nature, and a longer randomised controlled trial with a larger sample, currently being undertaken by the author, would provide a fuller answer to the research question. Barriers to AAL include health and safety concerns and steps to ensure the welfare of the dog.Keywords: animal-assisted learning, emotional wellbeing, reading, reading to dogs
Procedia PDF Downloads 1304428 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging
Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason
Abstract:
Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia
Procedia PDF Downloads 2744427 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 1074426 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus
Authors: Sweta Rout-Hoolash
Abstract:
Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad
Procedia PDF Downloads 3274425 Managing Configuration Management in Different Types of Organizations
Authors: Dilek Bilgiç
Abstract:
Configuration Management (CM) is a discipline assuring the consistency between product information the reality all along the product lifecycle. Although the extensive benefits of this discipline, such as the direct impact on increasing return on investment, reducing lifecycle costs, are realized by most organizations. It is worth evaluating that CM functions might be successfully implemented in some organized anarchies. This paper investigates how to manage ambiguity in CM processes as an opportunity within an environment that has different types of complexities and choice arenas. It is not explained how to establish a configuration management organization in a company; more specifically, it is analyzed how to apply configuration management processes when different types of streams exist. From planning to audit, all the CM functions may provide different organization learning opportunities when those applied with the right leadership methods.Keywords: configuration management, leadership, organizational analysis, organized anarchy, cm process, organizational learning, organizational maturity, configuration status accounting, leading innovation, change management
Procedia PDF Downloads 2104424 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.Keywords: case based reasoning, classification, expert's knowledge, hybrid model
Procedia PDF Downloads 3674423 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 554422 Early Childhood Education: Working with Children, Families, and Communities for Collective Impact
Authors: Sunico Armie Flores
Abstract:
Early childhood education (ECE) is pivotal in shaping the future of individuals and society. This paper explores the collaborative efforts required among educators, families, and communities to create a collective impact on young children’s development. It delves into the importance of these partnerships, effective strategies for engagement, and the challenges and opportunities inherent in fostering such collaboration. By examining current research and practices, the paper aims to highlight the essential role of an integrated approach in achieving significant and sustainable improvements in early childhood outcomes.Keywords: early childhood education, lifelong learning, cognitive development, socio-emotional development, educators, families, communities, collaborative efforts, collective impact, early learning environments, holistic development, high-quality ECE programs, investment in education
Procedia PDF Downloads 384421 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers, new model
Procedia PDF Downloads 4654420 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria
Authors: Osagiede Mercy Afe
Abstract:
After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.Keywords: children, information communication technology (ICT), potentials, sustainable development, science education
Procedia PDF Downloads 4884419 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour
Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling
Abstract:
Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model
Procedia PDF Downloads 994418 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2774417 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 674416 Experiences of Youth in Learning About Healthy Intimate Relationships: An Institutional Ethnography
Authors: Anum Rafiq
Abstract:
Adolescence is a vulnerable period for youth across the world. It is a period of new learning with opportunities to understand and develop perspectives on health and well-being. With youth beginning to engage in intimate relationships at an earlier age in the 21st century, concentrating on the learning opportunity they have in school is paramount. The nature of what has been deemed important to teach in schools has changed throughout history, and the focus has shifted from home/family skills to teaching youth how to be competitive in the job market. Amidst this emphasis, opportunities for them exist to learn about building healthy intimate relationships, one of the foundational elements of most people’s lives. Using an Institutional Ethnography (IE), the lived experiences of youth in how they understand intimate relationships and how their learning experience is organized through the high school Health and Physical Education (H&PE) course is explored. An empirical inquiry into how the actual work of teachers and youth are socially organized by a biomedical, employment-related, and efficiency-based discourse is provided. Through thirty-two qualitative interviews with teachers and youth, a control of ruling relations such as institutional accountability circuits, performance reports, and timetabling over the experience of teachers and youth is found. One of the facets of the institutional accountability circuit is through the social organization of teaching and learning about healthy intimate relationships being framed through a biomedical discourse. In addition, the role of a hyper-focus on performance and evaluation is found as paramount in situating healthy intimacy discussions as inferior to neoliberally charged productivity measures such as employment skills. Lastly, due to the nature of institutional policies such as regulatory guidelines, teachers are largely influenced to avoid diving into discussions deemed risky or taboo by society, such as healthy intimacy in adolescence. The findings show how texts such as the H&PE curriculum, the Ontario College of Teachers (OCT) guidelines, Ministry of Education Performance Reports, and the timetable organize the day-to-day activities of teachers and students and reproduce different disjunctures for youth. This disjuncture includes some of their experiences being subordinated, difficulty relating to curriculum, and an experience of healthy living discussions being skimmed over across sites. The findings detail that the experience of youth in learning about healthy intimate relationships is not akin to the espoused vision outlined in policy documents such as the H&PE (2015) curriculum policy. These findings have implications for policymakers, activists, and school administration alike, which call for an investigation into who is in power when it comes to youth’s learning needs, as a pivotal period where youth can be equipped with life-changing knowledge is largely underutilized. A restructuring of existing institutional practices that allow for the social and institutional flexibility required to broach the topic of healthy intimacy in a comprehensive manner is required.Keywords: health policy, intimate relationships, youth, education, ruling relations, sexual education, violence prevention
Procedia PDF Downloads 714415 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 3894414 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3504413 Academic Staff Development: A Lever to Address the Challenges of the 21st Century University Classroom
Authors: Severino Machingambi
Abstract:
Most academics entering Higher education as lecturers in South Africa do not have qualifications in Education or teaching. This creates serious problems since they are not sufficiently equipped with pedagogical approaches and theories that inform their facilitation of learning strategies. This, arguably, is one of the reasons why higher education institutions are experiencing high student failure rate. In order to mitigate this problem, it is critical that higher education institutions devise internal academic staff development programmes to capacitate academics with pedagogical skills and competencies so as to enhance the quality of student learning. This paper reported on how the Teaching and Learning Development Centre of a university used design-based research methodology to conceptualise and implement an academic staff development programme for new academics at a university of technology. This approach revolves around the designing, testing and refining of an educational intervention. Design-based research is an important methodology for understanding how, when, and why educational innovations work in practice. The need for a professional development course for academics arose due to the fact that most academics at the university did not have teaching qualifications and many of them were employed straight from industry with little understanding of pedagogical approaches. This paper examines three key aspects of the programme namely, the preliminary phase, the teaching experiment and the retrospective analysis. The preliminary phase is the stage in which the problem identification takes place. The problem that this research sought to address relates to the unsatisfactory academic performance of the majority of the students in the institution. It was therefore hypothesized that the problem could be dealt with by professionalising new academics through engagement in an academic staff development programme. The teaching experiment phase afforded researchers and participants in the programme the opportunity to test and refine the proposed intervention and the design principles upon which it was based. The teaching experiment phase revolved around the testing of the new academics professional development programme. This phase created a platform for researchers and academics in the programme to experiment with various activities and instructional strategies such as case studies, observations, discussions and portfolio building. The teaching experiment phase was followed by the retrospective analysis stage in which the research team looked back and tried to give a trustworthy account of the teaching/learning process that had taken place. A questionnaire and focus group discussions were used to collect data from participants that helped to evaluate the programme and its implementation. One of the findings of this study was that academics joining university really need an academic induction programme that inducts them into the discourse of teaching and learning. The study also revealed that existing academics can be placed on formal study programmes in which they acquire educational qualifications with a view to equip them with useful classroom discourses. The study, therefore, concludes that new and existing academics in universities should be supported through induction programmes and placement on formal studies in teaching and learning so that they are capacitated as facilitators of learning.Keywords: academic staff, pedagogy, programme, staff development
Procedia PDF Downloads 1334412 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1684411 'Systems' and Its Impact on Virtual Teams and Electronic Learning
Authors: Shavindrie Cooray
Abstract:
It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.Keywords: e-learning, virtual teams, systems approach, conflicts
Procedia PDF Downloads 1374410 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals
Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan
Abstract:
Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.Keywords: active learning, game, diabetes, nutrition
Procedia PDF Downloads 1744409 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 694408 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 138