Search results for: cost analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32164

Search results for: cost analysis

29404 Influence of Dopant of Tin (Sn) on the Optoelectronic and Structural Properties of Cadmium Sulfide (CdS) Pallets

Authors: Himanshu Pavagadhi, Maunik Jani, S. M. Vyas, Jaymin Ray, Vimal Patel, Piyush Patel, Jignesh P. Raval

Abstract:

The preparation of pure and Sn-doped cadmium sulfide (CdS) pellets was carried out using a compression technique with a pelletizer. The energy dispersive X-ray (EDX) analysis is used to confirm the purity and stoichiometric ratio of Cd, S, and Sn in the prepared pellets. The surface morphology of the pellets was examined using a scanning electron microscope. Both XRD and Raman scattering spectrum analysis confirmed the doping effect in the CdS pellets. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure and revealed that the grain size decreases with increasing Sn dopant concentration in the parent CdS pellet. The optical properties of the pellets were evaluated by measuring diffuse reflectance using a UV-vis spectrophotometer. The analysis indicated that as the Sn concentration increases in the parent CdS pellet, the optical band gap decreases. This implies that the optical properties of the CdS material are also affected by the Sn dopant.

Keywords: CdS, Sn dopant, UV-Spetrophotometer, XRD

Procedia PDF Downloads 35
29403 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey

Authors: Erdal Akyol, Mutlu Alkan

Abstract:

Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.

Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics

Procedia PDF Downloads 468
29402 Women Entrepreneurial Resiliency Amidst COVID-19

Authors: Divya Juneja, Sukhjeet Kaur Matharu

Abstract:

Purpose: The paper is aimed at identifying the challenging factors experienced by the women entrepreneurs in India in operating their enterprises amidst the challenges posed by the COVID-19 pandemic. Methodology: The sample for the study comprised 396 women entrepreneurs from different regions of India. A purposive sampling technique was adopted for data collection. Data was collected through a self-administered questionnaire. Analysis was performed using the SPSS package for quantitative data analysis. Findings: The results of the study state that entrepreneurial characteristics, resourcefulness, networking, adaptability, and continuity have a positive influence on the resiliency of women entrepreneurs when faced with a crisis situation. Practical Implications: The findings of the study have some important implications for women entrepreneurs, organizations, government, and other institutions extending support to entrepreneurs.

Keywords: women entrepreneurs, analysis, data analysis, positive influence, resiliency

Procedia PDF Downloads 118
29401 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 520
29400 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 78
29399 Effect of Soil Corrosion in Failures of Buried Gas Pipelines

Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur

Abstract:

In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.

Keywords: corrosion, pit depth, sensitivity analysis, exposure period

Procedia PDF Downloads 533
29398 Legislator’s Liability – Sovereign Immunity and Rule of Law

Authors: Isabel Mousinho de Figueiredo

Abstract:

Traditionally it was held that the king can do no wrong. History has proved otherwise, and both the rule of law and the open society call for a diversification of checks and balances, including civil liability in tort. Most jurisdictions are right to fear the excessive cost of such liability for the innocent taxpayer. There are notwithstanding extreme instances where refusing compensation is perceived to be outrageous. Many public bodies end up handing out on a voluntary basis, which leaves room to question its legality and merit. Instead, some criteria can shed light on the fairness of an underlying rationale of such compensation and cordon it off within reasonable limits.

Keywords: comparative law, liability of legislators, public bodies, tort law

Procedia PDF Downloads 123
29397 Safe Zone: A Framework for Detecting and Preventing Drones Misuse

Authors: AlHanoof A. Alharbi, Fatima M. Alamoudi, Razan A. Albrahim, Sarah F. Alharbi, Abdullah M Almuhaideb, Norah A. Almubairik, Abdulrahman Alharby, Naya M. Nagy

Abstract:

Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels.

Keywords: detection, drone, jamming, prevention, privacy, RF, radar, UAV

Procedia PDF Downloads 216
29396 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 17
29395 Multimodal Discourse Analysis of Egyptian Political Movies: A Case Study of 'People at the Top Ahl Al Kemma' Movie

Authors: Mariam Waheed Mekheimar

Abstract:

Nascent research is conducted to the advancement of discourse analysis to include different modes as images, sound, and text. The focus of this study will be to elucidate how images are embedded with texts in an audio-visual medium as cinema to send political messages; it also seeks to broaden our understanding of politics beyond a relatively narrow conceptualization of the 'political' through studying non-traditional discourses as the cinematic discourse. The aim herein is to develop a systematic approach to film analysis to capture political meanings in films. The method adopted in this research is Multimodal Discourse Analysis (MDA) focusing on embedding visuals with texts. As today's era is the era of images and that necessitates analyzing images. Drawing on the writings of O'Halloran, Kress and Van Leuween, John Bateman and Janina Wildfeuer, different modalities will be studied to understand how those modes interact in the cinematic discourse. 'People at the top movie' is selected as an example to unravel the political meanings throughout film tackling the cinematic representation of the notion of social justice.

Keywords: Egyptian cinema, multimodal discourse analysis, people at the top, social justice

Procedia PDF Downloads 428
29394 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 138
29393 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 224
29392 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network

Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir

Abstract:

Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.

Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS

Procedia PDF Downloads 405
29391 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 305
29390 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 75
29389 Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis

Authors: Abu Yousuf, Maksudur Rahman Khan, Ahasanul Karim, Amirul Islam, Minhaj Uddin Monir, Sharmin Sultana, Domenico Pirozzi

Abstract:

Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate.

Keywords: biodiesel, electroporation, microbial lipids, transesterification

Procedia PDF Downloads 286
29388 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 215
29387 In Case of Possible Disaster Management with Geographic Information System in Konya

Authors: Savaş Durduran, Ceren Yağci

Abstract:

The nature of the events going on in the world, when people’s lives are considered significantly affects natural disasters. Considering thousands of years of earth history, it is seen that many natural disasters, particularly earthquakes located in our country. Behaving cautious, without occurring hazards, after being disaster is much easier and cost effective than returning to the normal life. The four phases of disaster management in the whole world has been described as; pre-disaster preparedness and mitigation, post-disaster response and rehabilitation studies. Pre-disaster and post-disaster phases has half the weight of disaster management. How much would be prepared for disaster, no matter how disaster damage reducing work gives important, we will be less harm from material and spiritual sense. To do this in a systematic way we use the Geographic Information Systems (GIS). The execution of the emergency services to be on time and emergency control mechanism against the development the most appropriate decision Geographic Information System GIS) can be useful. The execution of the emergency services to be on time and emergency control mechanism towards for developing to be the most appropriate decision Geographic Information System (GIS) can be useful. The results obtained by using products with GIS analysis of seismic data to the city, manager of the city required information and data that can be more healthy and satisfies the appropriate policy decisions can be produced. In this study, using ArcGIS software and benefiting reports of the earthquake that occurred in the Konya city, spatial and non-spatial data consisting databases created, by the help of this database a potential disaster management aimed in the city of Konya regard to urban earthquake, GIS-aided analyzes were performed.

Keywords: geographic information systems (GIS), disaster management, emergency control mechanism, Konya

Procedia PDF Downloads 476
29386 Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms

Authors: Gaurav Gupta, Jitendra Mahakud

Abstract:

This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs.

Keywords: cash flow, corporate investment, financing constraints, panel data method

Procedia PDF Downloads 246
29385 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell

Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa

Abstract:

Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.

Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions

Procedia PDF Downloads 174
29384 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 268
29383 Experimental Modal Analysis of Reinforced Concrete Square Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs.

Keywords: natural frequencies, mode shapes, modal analysis, RC slabs

Procedia PDF Downloads 413
29382 Rasch Analysis in the Development of 'Kohesif-Ques': An Instrument to Measure Social Cohesion

Authors: Paramita Sekar Ayu, Sunjaya Deni Kurniadi, Yamazaki Chiho, Hilfi Lukman, Koyama Hiroshi

Abstract:

Social cohesion, or closeness among members of society, is an important determinant of population health. A cohesive society is a crucial societal condition for a positive life evaluation and subjective wellbeing, and people living in a cohesive society are happier and more satisfied with life and achieve better health status. The objective of this study was to compose and validate a questionnaire for measuring social cohesion with Rasch analysis. We develop a set of 13 questions to measure 4 dimensions of social cohesion. Random samples of 166 Bandung citizens’ were selected to answer the questionnaire. To evaluate the questionnaire’s validity and reliability, Rasch analysis (a psychometric model for analyzing categorical data on questionnaire responses) was carried out using Winsteps version 3.75.0. Rasch analysis was performed on the response given to 13 items included in the questionnaire. The reliability coefficient, Cronbach’s alpha was 0.70, model RMSE 0.08, SD 0.54, separation 7.14, and reliability of 0.98. ‘Kohesif-Ques’ is a useful instrument to assess social cohesion.

Keywords: rasch analysis, rasch model, social cohesion, quesionnaire

Procedia PDF Downloads 183
29381 Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis

Authors: Gurubasavaraju T. M.

Abstract:

The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating.

Keywords: MR fluid, double ended MR damper, CFD, FEA

Procedia PDF Downloads 184
29380 Indigenous Women and Intimate Partner Homicide in Australia: Preventing Future Deaths through Law, Policy and Practice Change

Authors: Kyllie Cripps

Abstract:

In Australia, not dissimilar to other jurisdictions with indigenous populations, indigenous women are more likely to experience violence than any other section of society. In recent years in response to horrific examples of Indigenous women’s deaths, Australian Coronial courts have investigated, wanting to know more about the circumstances that led to the deaths. This paper critically examined 12 Coronial Court investigations from around Australia, analyzing them thematically. The analysis highlighted the differential vulnerability of indigenous women to intimate partner homicides. In all the cases reviewed, it was evident that the women’s deaths, in most instances were entirely preventable. Evidence was also presented demonstrating that services were aware of the women’s heightened risks but were unable to sufficiently coordinate themselves to provide wrap around support to minimise the risk of violence and to maximise the women’s safety. Consequently, putting the women in environments where their deaths were both predictable and inevitable. The profound system failings at the intersections of law, policy, and practice have ultimately cost indigenous women their lives. This paper firstly explores the nuances of the Coronial Court findings – demonstrating the similarities and differences present within the cases. Part two interrogates the reported system failings, and part three considers potential improvements in system integration to prevent future deaths. The paper concludes recognizing that Indigenous women play important valued roles in indigenous communities, their loss has profound costs and consequences, and to honor their memory, we must learn from their deaths and improve responses to intimate partner violence.

Keywords: homicide, intimate partner violence, indigenous women

Procedia PDF Downloads 182
29379 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 151
29378 A Proposal on the Educational Transactional Analysis as a Dialogical Vision of Culture: Conceptual Signposts and Practical Tools for Educators

Authors: Marina Sartor Hoffer

Abstract:

The multicultural composition of today's societies poses new challenges to educational contexts. Schools are therefore called first to develop dialogic aptitudes and communicative skills adapted to the complex reality of post-modern societies. It is indispensable for educators and for young people to learn theoretical and practical tools during their scholastic path, in order to allow the knowledge of themselves and of the others with the aim of recognizing the value of the others regardless of their culture. Dialogic Skills help to understand and manage individual differences by allowing the solution of problems and preventing conflicts. The Educational Sector of Eric Berne’s Transactional Analysis offers a range of methods and techniques for this purpose. Educational Transactional Analysis is firmly anchored in the Personalist Philosophy and deserves to be promoted as a theoretical frame suitable to face the challenges of contemporary education. The goal of this paper is therefore to outline some conceptual and methodological signposts for the education to dialogue by drawing concepts and methodologies from educational transactional analysis.

Keywords: dialogic process, education to dialogue, educational transactional analysis, personalism, the good of the relationship

Procedia PDF Downloads 270
29377 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 57
29376 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables

Procedia PDF Downloads 515
29375 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements

Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali

Abstract:

India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.

Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio

Procedia PDF Downloads 239