Search results for: brain training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4999

Search results for: brain training

2239 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: settlement, Subway Line, FLAC3D, ANFIS Method

Procedia PDF Downloads 233
2238 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 349
2237 Case Report and Literature Review of Opalski Syndrome: A Rare Brainstem Stroke

Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing

Abstract:

Background: In lateral medullary strokes, hemiparesis doesn't typically manifest due to the distinct vascular supply to the corticospinal tract located within the medulla's tegmentum. Hemiparesis resulting from a medullary infarct would likely be attributable to a medial medullary stroke characterized by contralateral hemiparesis since the corticospinal tract fibers at this level have yet to cross over. This paper reports a unique case of a lateral medullary stroke variant that presented with ipsilateral hemiparesis. Objective: There have only been 23 other cases of reported Opalski syndrome, making this only the 24th and 25th case reported worldwide. Case Presentation: A 53-year-old male was admitted with slurring of speech with gait instability, numbness on the right face, Horner’s syndrome, and 4/5 motor strength on the right extremities. Hyperreflexia was noted on the right, together with a Babinski’s sign. Cranial magnetic resonance imaging (MRI) showed an infarct on the right dorsolateral medulla. A 48-year-old male was admitted complaining of dizziness, ataxic gait, veering to the left during ambulation, left facial numbness, left hemiplegia, crossed sensory disturbance, and right limb ataxia. MRI revealed an acute left lateral medullary infarction. Conclusion: A rare type of lateral medullary infarction, the Opalski Syndrome, is a weakness ipsilateral to the lesion of the infarct. The lesion involves the ipsilateral corticospinal tract below the pyramidal decussation. The considerable diversity in the posterior brain circulation serves as a contributing factor to the clinical observation of incomplete textbook syndromes, underscoring the significance of the neurological clinical approach and a solid foundation in neuroanatomy.

Keywords: Opalski syndrome, rare stroke, stroke, Wallenberg's syndrome

Procedia PDF Downloads 76
2236 Programs in Nigerian Higher Institutions and Graduates Unemployment

Authors: Evuarherhe Veronica Abolo

Abstract:

The study investigated the programs in Nigerian higher institutions and how they influence unemployment of graduates in the country. The study employed the survey design. The population of the study includes two universities, two polytechnics and two colleges of education in Lagos State. A total of 350 participants, which include graduates and students were sampled for the study. A structured interview schedule and direct observation were used to collect data on the three research questions drawn for the study. The data were analyzed using rating of the structured interview in tables and percentages. The results of the study revealed that Nigerian graduates are not only unemployed but can hardly meet the requirements of available job vacancies due to the stereotype nature in scope, content and methods of the programs in the institutions. Recommendations such as collaboration of companies (end- users) and institutions in the training of students, restructuring of the content and methodology of programs and providing soft loans and other facilities to the young graduates were proffered to reduce the rate of graduates’ unemployment in Nigeria.

Keywords: higher institution, graduate unemployment, soft loan, unemployment

Procedia PDF Downloads 495
2235 The Video Database for Teaching and Learning in Football Refereeing

Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez

Abstract:

The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.

Keywords: assistants referees, cloud computing, e-learning, instructors, FIFA, referees, soccer, video database

Procedia PDF Downloads 439
2234 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: automatic speech recognition, asr, air traffic control, atc

Procedia PDF Downloads 399
2233 The Effects of Different Doses of Caffeine on Young Futsal Players

Authors: Saead Rostami, Seyyed Hadi Hosseini Alavije, Aliakbar Torabi, Mohammad Bekhradi

Abstract:

This study is about The effects of different doses of caffeine on young Futsal players. Young futsal players of selected ShahinShahr(a city in Esfahan province, Iran) team are sampled (24 people of 18.3±1.9 year- old). All players are members of youth team playing in Esfahan counties league. Having at least 5 years of experience, 2 practices and 1 match per week and lacking any limitation in the past 6 months are the most important requirements for sampling the players. Next, the study topic, its method, its uses, as ell possible risks are explained to the players. They signed a consent letter to take part in the study. Interest in the use of caffeine as an ergogenic aid has increased since the International Olympic Committee lifted the partial ban on its use. Caffeine has beneficial effects on various aspects of athletic performance, but its effects on training have been neglected. The purpose of this study was to investigate the acute effect of caffeine on testosterone and cortisole in young futsal players.

Keywords: anabolic, catabolic, performance, testosterone cortisol ratio, RAST test

Procedia PDF Downloads 347
2232 Fairness in Recommendations Ranking: From Pairwise Approach to Listwise Approach

Authors: Patik Joslin Kenfack, Polyakov Vladimir Mikhailovich

Abstract:

Machine Learning (ML) systems are trained using human generated data that could be biased by implicitly containing racist, sexist, or discriminating data. ML models learn those biases or even amplify them. Recent research in work on has begun to consider issues of fairness. The concept of fairness is extended to recommendation. A recommender system will be considered fair if it doesn’t under rank items of protected group (gender, race, demographic...). Several metrics for evaluating fairness concerns in recommendation systems have been proposed, which take pairs of items as ‘instances’ in fairness evaluation. It doesn’t take in account the fact that the fairness should be evaluated across a list of items. The paper explores a probabilistic approach that generalize pairwise metric by using a list k (listwise) of items as ‘instances’ in fairness evaluation, parametrized by k. We also explore new regularization method based on this metric to improve fairness ranking during model training.

Keywords: Fairness, Recommender System, Ranking, Listwise Approach

Procedia PDF Downloads 148
2231 Virtual Computing Lab for Phonics Development among Deaf Students

Authors: Ankita R. Bansal, Naren S. Burade

Abstract:

Idea is to create a cloud based virtual lab for Deaf Students, “A language acquisition program using Visual Phonics and Cued Speech” using VMware Virtual Lab. This lab will demonstrate students the sounds of letters associated with the Language, building letter blocks, making words, etc Virtual labs are used for demos, training, for the Lingual development of children in their vernacular language. The main potential benefits are reduced labour and hardware costs, faster response times to users. Virtual Computing Labs allows any of the software as a service solutions, virtualization solutions, and terminal services solutions available today to offer as a service on demand, where a single instance of the software runs on the cloud and services multiple end users. VMWare, XEN, MS Virtual Server, Virtuoso, and Citrix are typical examples.

Keywords: visual phonics, language acquisition, vernacular language, cued speech, virtual lab

Procedia PDF Downloads 599
2230 Performance Parameters of an Abbreviated Breast MRI Protocol

Authors: Andy Ho

Abstract:

Breast cancer is a common cancer in Australia. Early diagnosis is crucial for improving patient outcomes, as later-stage detection correlates with poorer prognoses. While multiparametric MRI offers superior sensitivity in detecting invasive and high-grade breast cancers compared to conventional mammography, its extended scan duration and high costs limit widespread application. As a result, full protocol MRI screening is typically reserved for patients at elevated risk. Recent advancements in imaging technology have facilitated the development of Abbreviated MRI protocols, which dramatically reduce scan times (<10 minutes compared to >30 minutes for full protocol). The potential for Abbreviated MRI to offer a more time- and cost-efficient alternative has implications for improving patient accessibility, reducing appointment durations, and enhancing compliance—especially relevant for individuals requiring regular annual screening over several decades. The purpose of this study is to assess the diagnostic efficacy of Abbreviated MRI for breast cancer screening among high-risk patients at the Royal Prince Alfred Hospital (RPA). This study aims to determine the sensitivity, specificity, and inter-reader variability of Abbreviated MRI protocols when interpreted by subspecialty-trained Breast Radiologists. A systematic review of the RPA’s electronic Picture Archive and Communication System identified high-risk patients, defined by Australian ‘Medicare Benefits Schedule’ criteria, who underwent Breast MRI from 2021 to 2022. Eligible participants included asymptomatic patients under 50 years old referred by the High-Risk Clinic due to a high-risk genetic profile or relevant familial history. The MRIs were anonymized, randomized, and interpreted by four Breast Radiologists, each independently completing standardized proforma evaluations. Radiological findings were compared against histopathology as the gold standard or follow-up imaging if biopsies were unavailable. Statistical metrics, including sensitivity, specificity, and inter-reader variability, were assessed. The Fleiss-Kappa analysis demonstrated a fair inter-reader agreement (kappa = 0.25; 95% CI: 0.19–0.32; p < 0.0001). The sensitivity for detecting malignancies was 0.75, with a specificity of 0.84. These findings underline the potential of Abbreviated MRI as a reliable screening tool for malignancies with significant specificity, though reduced sensitivity highlights the importance of robust radiologist training and consistent evaluation standards. Abbreviated MRI protocols exhibit promise as a viable screening option for high-risk patients, combining reduced scan times and acceptable diagnostic accuracy. Further work to refine interpretation practices and optimize training is essential to maximize the protocol’s utility in routine clinical screening and facilitate broader accessibility.

Keywords: abbreviated, breast, cancer, MRI

Procedia PDF Downloads 12
2229 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 246
2228 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
2227 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.

Keywords: education, methodological system, the teaching of mathematics, students motivation

Procedia PDF Downloads 354
2226 Combating and Preventing Unemployment in Sweden

Authors: Beata Wentura-Dudek

Abstract:

In Sweden the needs of the labor market are regularly monitored. Test results and forecasts translate directly into the education system in this country, which is largely a state system. Sweden is one of the first countries in Europe that has used active labor market policies. It is realized that there is an active unemployment which includes a wide range of activities that can be divided into three groups: Active forms of influencing the creation of new jobs, active forms that affect the labor supply and active forms for people with disabilities. Most of the funding is allocated there for subsidized employment and training. Research conducted in Sweden shows that active forms of counteracting unemployment focused on the long-term unemployed can significantly raise the level of employment in this group.

Keywords: Sweden, research conducted in Sweden, labour market, labour market policies, unemployment, active forms of influencing the creation of new jobs, active forms of counteracting unemployment, employment, subsidized employment education

Procedia PDF Downloads 289
2225 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach

Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva

Abstract:

The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.

Keywords: analog ensemble, electricity market, PV forecast, solar energy

Procedia PDF Downloads 158
2224 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features

Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh

Abstract:

This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.

Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal

Procedia PDF Downloads 104
2223 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 96
2222 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach

Authors: N. V. Kazmiruk, Y. R. Nartsissov

Abstract:

Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.

Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling

Procedia PDF Downloads 120
2221 Generating Music with More Refined Emotions

Authors: Shao-Di Feng, Von-Wun Soo

Abstract:

To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.

Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning

Procedia PDF Downloads 89
2220 The Use of Biofeedback to Increase Resilience and Mental Health of Supersonic Pilots

Authors: G. Kloudova, S. Kozlova, M. Stehlik

Abstract:

Pilots are operating in a high-risk environment rich in potential stressors, which negatively affect aviation safety and the mental health of pilots. In the research conducted, the pilots were offered mental training biofeedback therapy. Biofeedback is an objective tool to measure physiological responses to stress. After only six sessions, all of the pilots tested showed significant differences between their initial condition and their condition after therapy. The biggest improvement was found in decreased heart rate (in 83.3% of tested pilots) and respiration rate (66.7%), which are the best indicators of anxiety states and panic attacks. To incorporate all of the variables, we correlated the measured physiological state of the pilots with their personality traits. Surprisingly, we found a high correlation with peripheral temperature and confidence (0.98) and with heart rate and aggressiveness (0.97). A retest made after a one-year interval showed that in majority of the subjects tested their acquired self-regulation ability had been internalized.

Keywords: aviation, biofeedback, mental workload, performance psychology

Procedia PDF Downloads 248
2219 Using Virtual Reality Exergaming to Improve Health of College Students

Authors: Juanita Wallace, Mark Jackson, Bethany Jurs

Abstract:

Introduction: Exergames, VR games used as a form of exercise, are being used to reduce sedentary lifestyles in a vast number of populations. However, there is a distinct lack of research comparing the physiological response during VR exergaming to that of traditional exercises. The purpose of this study was to create a foundationary investigation establishing changes in physiological responses resulting from VR exergaming in a college aged population. Methods: In this IRB approved study, college aged students were recruited to play a virtual reality exergame (Beat Saber) on the Oculus Quest 2 (Facebook, 2021) in either a control group (CG) or training group (TG). Both groups consisted of subjects who were not habitual users of virtual reality. The CG played VR one time per week for three weeks and the TG played 150 min/week three weeks. Each group played the same nine Beat Saber songs, in a randomized order, during 30 minute sessions. Song difficulty was increased during play based on song performance. Subjects completed a pre- and posttests at which the following was collected: • Beat Saber Game Metrics: song level played, song score, number of beats completed per song and accuracy (beats completed/total beats) • Physiological Data: heart rate (max and avg.), active calories • Demographics Results: A total of 20 subjects completed the study; nine in the CG (3 males, 6 females) and 11 (5 males, 6 females) in the TG. • Beat Saber Song Metrics: The TG improved performance from a normal/hard difficulty to hard/expert. The CG stayed at the normal/hard difficulty. At the pretest there was no difference in game accuracy between groups. However, at the posttest the CG had a higher accuracy. • Physiological Data (Table 1): Average heart rates were similar between the TG and CG at both the pre- and posttest. However, the TG expended more total calories. Discussion: Due to the lack of peer reviewed literature on c exergaming using Beat Saber, the results of this study cannot be directly compared. However, the results of this study can be compared with the previously established trends for traditional exercise. In traditional exercise, an increase in training volume equates to increased efficiency at the activity. The TG should naturally increase in difficulty at a faster rate than the CG because they played 150 hours per week. Heart rate and caloric responses also increase during traditional exercise as load increases (i.e. speed or resistance). The TG reported an increase in total calories due to a higher difficulty of play. The song accuracy decreases in the TG can be explained by the increased difficulty of play. Conclusion: VR exergaming is comparable to traditional exercise for loads within the 50-70% of maximum heart rate. The ability to use VR for health could motivate individuals who do not engage in traditional exercise. In addition, individuals in health professions can and should promote VR exergaming as a viable way to increase physical activity and improve health in their clients/patients.

Keywords: virtual reality, exergaming, health, heart rate, wellness

Procedia PDF Downloads 187
2218 Study of Mobile Game Addiction Using Electroencephalography Data Analysis

Authors: Arsalan Ansari, Muhammad Dawood Idrees, Maria Hafeez

Abstract:

Use of mobile phones has been increasing considerably over the past decade. Currently, it is one of the main sources of communication and information. Initially, mobile phones were limited to calls and messages, but with the advent of new technology smart phones were being used for many other purposes including video games. Despite of positive outcomes, addiction to video games on mobile phone has become a leading cause of psychological and physiological problems among many people. Several researchers examined the different aspects of behavior addiction with the use of different scales. Objective of this study is to examine any distinction between mobile game addicted and non-addicted players with the use of electroencephalography (EEG), based upon psycho-physiological indicators. The mobile players were asked to play a mobile game and EEG signals were recorded by BIOPAC equipment with AcqKnowledge as data acquisition software. Electrodes were places, following the 10-20 system. EEG was recorded at sampling rate of 200 samples/sec (12,000samples/min). EEG recordings were obtained from the frontal (Fp1, Fp2), parietal (P3, P4), and occipital (O1, O2) lobes of the brain. The frontal lobe is associated with behavioral control, personality, and emotions. The parietal lobe is involved in perception, understanding logic, and arithmetic. The occipital lobe plays a role in visual tasks. For this study, a 60 second time window was chosen for analysis. Preliminary analysis of the signals was carried out with Acqknowledge software of BIOPAC Systems. From the survey based on CGS manual study 2010, it was concluded that five participants out of fifteen were in addictive category. This was used as prior information to group the addicted and non-addicted by physiological analysis. Statistical analysis showed that by applying clustering analysis technique authors were able to categorize the addicted and non-addicted players specifically on theta frequency range of occipital area.

Keywords: mobile game, addiction, psycho-physiology, EEG analysis

Procedia PDF Downloads 164
2217 Food Safety Management in Riyadh’s Ministry of Health Hospitals

Authors: A. Alrasheed, I. Connerton

Abstract:

Providing patients with safe meals on a daily basis is one of the challenges in the healthcare sector. In Saudi Arabia matters related to food safety and hygiene have been the heart of the Ministry of Health (MOH) and Saudi Food and Drugs Authority (SFDA). The aim of this study is to examine the causes of inadequate implementation of food safety management systems such as HACCP in Riyadh’s MOH hospitals. By the law, food safety must be managed using a documented, HACCP based approach, and food handlers must be appropriately trained in food safety. Food handlers in Saudi Arabia are not required to provide a certificate or attend a food handling training course even in healthcare sectors. Since food safety and hygiene issues are of increasing importance for Saudi Arabian health decision makers, the SFDA has been established to apply food hygiene requirements in all food operations. It should be pointed out that the implications of food outbreaks on the whole society may potentially go beyond individual health impacts but also impact on the Nation’s health and bring about economic repercussions.

Keywords: food safety, patient, hospital, HACCP

Procedia PDF Downloads 872
2216 The Axonal Connectivity of Motor and Premotor Areas as Revealed through Fiber Dissections: Shedding Light on the Structural Correlates of Complex Motor Behavior

Authors: Spyridon Komaitis, Christos Koutsarnakis, Evangelos Drosos, Aristotelis Kalyvas

Abstract:

This study opts to investigate the intrinsic architecture, morphology, and spatial relationship of the subcortical pathways implicated in the connectivity of the motor/premotor cortex and SMA/pre-SMA complex. Twenty normal, adult, formalin-fixed cerebral hemispheres were explored through the fiber micro-dissection technique. Lateral to medial and medial to lateral dissections focused on the area of interest were performed in a tandem manner and under the surgical microscope. We traced the subcortical architecture, spatial relationships, and axonal connectivity of four major pathways: a) the dorsal component of the SLF (SLF-I) was found to reside in the medial aspect of the hemisphere and seen to connect the precuneus with the SMA and pre-SMA complex, b) the frontal longitudinal system (FLS) was consistently encountered as the natural anterior continuation of the SLF-II and SLF-III and connected the premotor and prefrontal cortices c) the fronto-caudate tract (FCT), a fan-shaped tract, was documented to participate in connectivity of the prefrontal and premotor cortices to the head and body of the caudate nucleus and d) the cortico-tegmental tract(CTT) was invariably recorded to subserve the connectivity of the tegmental area with the fronto-parietal cortex. No hemispheric asymmetries were recorded for any of the implicated pathways. Sub-segmentation systems were also proposed for each of the aforementioned tracts. The structural connectivity and functional specialization of motor and premotor areas in the human brain remain vague to this day as most of the available evidence derives either from animal or tractographic studies. By using the fiber-microdissection technique as our main method of investigation, we provide sound structural evidence on the delicate anatomy of the related white matter pathways.

Keywords: neuroanatomy, premotor, motor, connectivity

Procedia PDF Downloads 128
2215 Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human endogenous retrovirus, central nervous system, MSRV

Procedia PDF Downloads 71
2214 South African Students' Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies

Authors: Lukanda Kalobo

Abstract:

In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training.

Keywords: conceptual understanding, mean, median, mode, statistical literacy

Procedia PDF Downloads 304
2213 Reduction of Transient Receptor Potential Vanilloid 1 for Chronic Pain and Depression Co-Morbidity through Electroacupuncture and Gene Deletion in Mice Brain

Authors: Bernice Lottering, Yi-Wen Lin

Abstract:

Chronic pain and depression have an estimated 80% rate of comorbidity with unsatisfactory treatment interventions signifying the importance of developing effective therapeutic interventions for a serious chronic condition affecting a large majority of the global population. Chronic pain is defined as persistent pain presenting for over 3 months. This disease state increases the risk of developing depression in comparison to healthy individuals. In the current study, complete Freund’s adjuvant (CFA) was used to induce cell-mediated chronic inflammatory pain in a murine model. Significant mechanical and thermal hyperalgesia was induced, alongside observable depression-like behaviors. These conditions were attenuated through the use of electroacupuncture (EA). Similarly, these effects were also investigated with respect to the transient receptor potential vanilloid 1 (TRPV1), by analyzing the effects of TRPV1 gene deletion on the comorbidity of chronic pain and depression. The expression of the TRPV1 inflammatory response, and related downstream molecules, including protein kinases (PKs), mitogen-activated protein kinase (MAPKs), and transcriptional factors, were significantly reduced in the thalamus, prefrontal cortex (PFC), hippocampus, and periaqueductal gray (PAG) of CFA-treated mice. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor 1 was also found to be reduced in the aforementioned areas, suggesting potential application and validity in a clinical setting. Our study determined the prospective therapeutic effects of EA in the treatment of chronic inflammatory pain and depression comorbidity and provides a novel and detailed mechanism underlying EA-mediated analgesia. These findings may be relevant in the utilization of clinical intervention approaches related to chronic pain and depression comorbidity.

Keywords: chronic pain, depression, NMDA, prefrontal cortex, TRPV1

Procedia PDF Downloads 133
2212 Adopting English as a Language of Instruction of STEM in Tunisian Higher Education Institutions: Promises and Challenges

Authors: Mimoun Melliti

Abstract:

This research paper investigates the promises, challenges, and perspectives associated with teaching STEM subjects in English within Tunisian higher education institutions. The study explores the potential benefits of English-medium instruction in Science, Technology, Engineering, and Mathematics (henceforth STEM) education, with a special focus on enhanced global competitiveness, improved English language proficiency, and increased access to international resources and collaborations. Additionally, it examines the various challenges faced by educators and students, such as language shift/barriers, curriculum adaptation, faculty training, and student support. Through a comprehensive analysis of promises and challenges, this paper aims to provide insights and recommendations for effectively implementing English medium instruction (henceforth EMI) of STEM in Tunisian higher education institutions. The paper concludes with a recommended action plan for the proper introduction of EMI of STEM in Tunisia.

Keywords: EMI;, STEM education, EFL, language reforms

Procedia PDF Downloads 76
2211 The Possibility of Content and Language Integrated Learning at Japanese Primary Schools

Authors: Rie Adachi

Abstract:

In Japan, it is required to improve students’ English communicative proficiency and the Education Ministry will start English education for the third grade and upper from year 2020 on. Considering the problems with the educational system, Content and Language Integrated Learning (CLIL) is more appropriate to be employed in elementary schools rather than just introducing English lessons. Effective CLIL takes place in the 4Cs Framework, and different strategies are used in various activities, such as arts and crafts, bodily expression, singing, playing roles, etc. After a CLIL workshop for local teachers focused on the 4Cs, the writer conducted a survey of the 36 participants using a questionnaire and found that they did not know the word CLIL, but seemed to have an interest after attending the workshop. The writer concluded that researchers and practitioners need to spread awareness of the 4Cs framework, to apply CLIL into Japanese educational context, to provide CLIL teacher training program and so on, in order to practice CLIL in Japanese elementary schools and nurture students with a global mindset.

Keywords: CLIL, 4Cs, homeroom teachers, intercultural understanding

Procedia PDF Downloads 168
2210 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 116