Search results for: generalized frequency division multiplexing
2426 Indigenizing the Curriculum: Teaching at the Ifugao State University, Philippines
Authors: Nancy Ann P. Gonzales, Serafin L. Ngohayon
Abstract:
The Nurturing Indigenous Knowledge Experts (NIKE) among the young generation in Ifugao was a project in Ifugao, Philippines spearheaded by the Ifugao State University (IFSU) and was sponsored by the UNESCO Association in Japan. Through the project, he Ifugao Indigenous Knowledge Workbook was developed. It contains nine chapters. The workbook was pilot-tested to students who had IK classes. The descriptive survey method of research was used. A questionnaire was used to gather data from first year Bachelor of Elementary Education and Bachelor of Political Science students. Frequency count, percentage and mean were computed. T-test was used to determine if there exists significant difference on knowledge gained before and after IK was taught to the students. Results revealed that the respondents have an increased level of IK in all the areas covered in the NIKE workbook after they enrolled in their classes. It is alarming to note that the students are knowledgeable about IK but they are not practicing it. However, according to the respondents, they will apply their IK through teaching after graduation.Keywords: curriculum, elders, Indigenous knowledge, and students
Procedia PDF Downloads 3572425 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 562424 Absence of Developmental Change in Epenthetic Vowel Duration in Japanese Speakers’ English
Authors: Takayuki Konishi, Kakeru Yazawa, Mariko Kondo
Abstract:
This study examines developmental change in the production of epenthetic vowels by Japanese learners of English in relation to acquisition of L2 English speech rhythm. Seventy-two Japanese learners of English in the J-AESOP corpus were divided into lower- and higher-level learners according to their proficiency score and the frequency of vowel epenthesis. Three learners were excluded because no vowel epenthesis was observed in their utterances. The analysis of their read English speech data showed no statistical difference between lower- and higher-level learners, implying the absence of any developmental change in durations of epenthetic vowels. This result, together with the findings of previous studies, will be discussed in relation to the transfer of L1 phonology and manifestation of L2 English rhythm.Keywords: vowel epenthesis, Japanese learners of English, L2 speech corpus, speech rhythm
Procedia PDF Downloads 2682423 Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers
Authors: Krešimir Begović, Miloš Rydval, Jan Tumajer, Kristyna Svobodová, Thomas Langbehn, Yumei Jiang, Vojtech Čada, Vaclav Treml, Ryszard Kaczka, Miroslav Svoboda
Abstract:
Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints.Keywords: dendroclimatology, Vaganova–Shashkin lite, conifers, central Europe, drought, blue intensity
Procedia PDF Downloads 582422 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.Keywords: functionally graded beam, free vibration, elastic foundation, Engesser-Timoshenko beam theory
Procedia PDF Downloads 4182421 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications
Authors: C. Elavarasi, T. Shanmuganantham
Abstract:
A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.Keywords: fractal, metamaterial, split ring resonator, waterlily shape
Procedia PDF Downloads 2732420 Experimental and Numerical Analysis of a Historical Bell Tower
Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi
Abstract:
In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.Keywords: bell tower, FEM, masonry, modal analysis, non-destructive testing
Procedia PDF Downloads 3552419 An AI Based Smart Conference Calling System Using Bluetooth Technology
Authors: Ankita Dixit
Abstract:
A conference call using a mobile refers to a telephonic call in which several people talks to each other simultaneously. This is one of the most eminent features nowadays. This concept is already existing using LTE technology for mobile phones supporting SIM cards. Hence, currently, a conference call is possible only with the support of a SIM card, i.e., a Mobile operator. Bluetooth is a short-range wireless technology that is used for exchanging data between devices placed over short distances (up to 240 meters). This is a booming technology that is easily and freely available and has no dependency on network operators. Our study work proposes a smart system to enable conference calls with more than two mobile users without SIM support to communicate with each other simultaneously. The AI-based proposed solution will be self–governed, self-learned and will be intelligent enough to smartly switch between all callers connected via Bluetooth in a conference call. This proposed solution system will greatly increase the potential of using Bluetooth technology from a wider applicability perspective of conference calls, which is currently only possible over LTE mobiles.Keywords: conference call, bluetooth, AI, frequency hopping, piconet, scatter net
Procedia PDF Downloads 852418 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 2472417 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform
Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman
Abstract:
This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement
Procedia PDF Downloads 5062416 Reconfigurable Efficient IIR Filter Design Using MAC Algorithm
Authors: Rajesh Mehra
Abstract:
In this paper an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with MATLAB and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: butterworth, DSP, IIR, MAC, FPGA
Procedia PDF Downloads 3572415 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 3132414 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 422413 Comparison of Propofol versus Ketamine-Propofol Combination as an Anesthetic Agent in Supratentorial Tumors: A Randomized Controlled Study
Authors: Jakkireddy Sravani
Abstract:
Introduction: The maintenance of hemodynamic stability is of pivotal importance in supratentorial surgeries. Anesthesia for supratentorial tumors requires an understanding of localized or generalized rising ICP, regulation, and maintenance of intracerebral perfusion, and avoidance of secondary systemic ischemic insults. We aimed to compare the effects of the combination of ketamine and propofol with propofol alone when used as an induction and maintenance anesthetic agent during supratentorial tumors. Methodology: This prospective, randomized, double-blinded controlled study was conducted at AIIMS Raipur after obtaining the institute Ethics Committee approval (1212/IEC-AIIMSRPR/2022 dated 15/10/2022), CTRI/2023/01/049298 registration and written informed consent. Fifty-two supratentorial tumor patients posted for craniotomy and excision were included in the study. The patients were randomized into two groups. One group received a combination of ketamine and propofol, and the other group received propofol for induction and maintenance of anesthesia. Intraoperative hemodynamic stability and quality of brain relaxation were studied in both groups. Statistical analysis and technique: An MS Excel spreadsheet program was used to code and record the data. Data analysis was done using IBM Corp SPSS v23. The independent sample "t" test was applied for continuously dispersed data when two groups were compared, the chi-square test for categorical data, and the Wilcoxon test for not normally distributed data. Results: The patients were comparable in terms of demographic profile, duration of the surgery, and intraoperative input-output status. The trends in BIS over time were similar between the two groups (p-value = 1.00). Intraoperative hemodynamics (SBP, DBP, MAP) were better maintained in the ketamine and propofol combination group during induction and maintenance (p-value < 0.01). The quality of brain relaxation was comparable between the two groups (p-value = 0.364). Conclusion: Ketamine and propofol combination for the induction and maintenance of anesthesia was associated with superior hemodynamic stability, required fewer vasopressors during excision of supratentorial tumors, provided adequate brain relaxation, and some degree of neuroprotection compared to propofol alone.Keywords: supratentorial tumors, hemodynamic stability, brain relaxation, ketamine, propofol
Procedia PDF Downloads 252412 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine
Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi
Abstract:
Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC
Procedia PDF Downloads 5892411 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator
Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi
Abstract:
The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.Keywords: dielectric constants, optical band gap (eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid
Procedia PDF Downloads 4042410 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 5912409 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software
Authors: Elham Zamiri
Abstract:
In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 ◦C to 70 ◦C. This investigation is developable for any geometry and material used in the nuclear reactor.Keywords: nuclear fuel fission, numberal simulation, fuel rod, reactor, Fluent software
Procedia PDF Downloads 1662408 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces
Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala
Abstract:
It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.Keywords: particle dispersion, capillary force, viscous drag, oscillations
Procedia PDF Downloads 3722407 Discussing Classicalness: Online Reviews of Plato’s Allegory of the Cave and the Discourses around the “Classic”
Authors: Damianos Tzoupis
Abstract:
In the context of the canon debate, assumptions regarding the place, value, and impact of classical texts have come under increased scrutiny. Factors like the distance of time, the depreciation of tradition, or the increased cultural omnivorousness and eclecticism have allegedly played a part in destabilizing classics’ authority. However, despite all these developments, classics’ position and influence is strong both in contemporary institutions and among readers’ preferences. Within this background of conflicted narratives, the study maps the varied discourses, value grammars, and justifications that lay cultural consumers employ to discuss those texts which have come to be the most consecrated and valuable cultural objects. The study centers on reviews posted on Goodreads. These online reviews offer unique access to unsolicited reception data produced by lay readers themselves, thus providing a clearer picture of lay cultural consumption and lay theories about classics. Moreover, the approach taken relies on the micro-practices of evaluation: the study investigates the evaluation of a specific cultural object, namely Plato’s allegory of the Cave, and treats it as an exemplary case to identify interpretive repertoires and valuation grammars about classical texts in general. The analysis uncovers a wide range of discourses used to construct the concept of the “classical text”. At first sight, lay reviewers seem to adopt interpretive repertoires that highlight qualities such as universality, timelessness, canonicity, cultural impact, and difficulty. These repertoires seem in principle to follow generalized and institutionalized discourses about classical texts, as these are established and circulated by institutions and cultural brokers like schools, academics, critics, etc. However, the study also uncovers important variations of these discourses. Lay readers tend to (re)negotiate the meanings/connotations of the above qualities and also structure their discourses by “modalities” such as necessity or surprise. These variations in interpretive repertoires are important in cultural sociology’s attempt to better grasp the principles informing the grammars of valuation that lay cultural consumers employ and to understand the kinds of impact that consecrated cultural objects have on people’s lives.Keywords: classics, interpretive repertoires around classicalness, institutionalized discourses, lay readers, online reviews/criticism
Procedia PDF Downloads 2142406 The Customer Satisfaction of Convenience Stores in the Municipality Northern Part of Thailand
Authors: Sivilai Jayankura
Abstract:
The objective is to study the behaviors, lifestyles and consumption of the student of Suan Sunandha Rajabhat University. This paper is survey research by using a questionnaire to collect the data with students of Suan Sunandha Rajabhat University for 385 sampling, random coincidence sampling has been provide. Data analysis by descriptive statistics include the distribution, frequency, percentage, average, and standard deviation. The result found that the majority of students are female, and spend their time with their own ideas, like socializing with friends and shopping at the shopping mall, see the movie at the theaters and at the night time will enjoy with their mobile phone and found they long for the quality-price and also brand name regarding the dress. The media and promotion is a key factor impact to the decision to purchase the product and service with mobile phones will be good business to expand business channel also.Keywords: consumption of teenager, internet, lifestyle behavior, Suan Sunundha Rajabhat University
Procedia PDF Downloads 1782405 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling
Authors: Alastair Hales, Xi Jiang
Abstract:
Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics
Procedia PDF Downloads 2212404 Performance Analysis of Curved U-Slot Patch Antenna with Enhanced Bandwidth and Isolation for Mimo Systems
Authors: Umesh Kumar, Arun Kumar Shukla, B. V. V. Ravindra Babu
Abstract:
The paper presents a compact tri band Curved U-Slot patch antenna with improved bandwidth and isolation characteristics. The proposed antenna excited by coaxial feed resonates at tri band of 2.8 GHz, 4.1 GHz and 5.7 GHz for VSWR ≤ 1.5 with an improved bandwidth of 99.7% and also for getting high gain antenna of 11.31 dB. A 2×2 MIMO is developed using the proposed antenna giving an excellent isolation of 28 dB between the two antennas. The simulation results of return loss, Mutual Coupling, Gain, VSWR, Surface Current Distribution and Electrical Distribution are presented. By keeping the substrate thickness constant over various dielectric constants, simulations were carried out using MATLAB® and HFSS (High Frequency Structure Simulator) software.Keywords: performance analysis, curved U-slot patch, antenna with enhanced bandwidth, isolation for mimo systems
Procedia PDF Downloads 5872403 Development of ELF Passive Shielding Application Using Magnetic Aqueous Substrate
Authors: W. N. L. Mahadi, S. N. Syed Zin, W. A. R. Othman, N. A. Mohd Rasyid, N. Jusoh
Abstract:
Public concerns on Extremely Low Frequency (ELF) Electromagnetic Field (EMF) exposure have been elongated since the last few decades. Electrical substations and high tension rooms (HT room) in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A mitigation method using magnetic aqueous substrate in shielding application was proposed in this paper for further investigation. using Manganese Zinc Ferrite (Mn0.4Zn0.6Fe2O4). The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELF-EMF exposure, as to mitigate its exposure.Keywords: ELF shielding, magnetic aqueous substrate, shielding effectiveness, passive shielding, magnetic material
Procedia PDF Downloads 5312402 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas
Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran
Abstract:
Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase
Procedia PDF Downloads 3832401 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures
Authors: Chiara Cesali
Abstract:
The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.Keywords: climate change, hydraulic design, precipitation, railway
Procedia PDF Downloads 1792400 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques
Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar
Abstract:
This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.Keywords: cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation
Procedia PDF Downloads 5372399 Impact of Lined and Unlined Water Bodies on the Distribution and Abundance of Fresh Water Snails in Certain Governorates in Egypt
Authors: Nahed Mohamed Ismail, Bayomy Mostafa, Ahmed Abdel Kader, Ahmed Mohamed Azzam
Abstract:
Effect of lining watercourses on the distribution and abundance of fresh water snails at two Egyptian governorates, Baheria (new reclaimed area) and Giza was studied. Seasonal survey in lined and unlined sites during two successive years was carried out. Samples of snails and water were collected from each examined site and the ecological conditions were recorded. The collected snails from each site were placed in plastic aquaria and transferred to the laboratory, where they were sorted out, identified, counted and examined for natural infection. The size frequency distribution was calculated for each snail species. Results revealed that snails were represented in all examined watercourses (lined and unlined) at the two tested habitats by 14 species. (Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Physa acuta. Helisoma duryi, Lymnaea natalensis, Planorbis planorbis, Cleopatra bulimoids, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus nilotica, Succinia cleopatra and Gabbiella senaarensis). During spring, the percentage of live (45%) and dead (55%) snail species was extremely highly significant lower (p>0.001) in lined water bodies compared to the unlined ones (93.5% and 6.5%, respectively) in the examined sites at Baheria. At Giza, the percentage values of live snail species from all lined watercourses (82.6% and 60.2%, during winter and spring, respectively) was significantly lower (p>0.05 & p>0.01) than those in unlined ones (91.1% and 79%, respectively). Size frequency distribution of snails collected from the lined and unlined water bodies at Baheria and Giza governorates during all seasons revealed that during survey, snail populations were stable and the recruitment of young to adult was continuing for some species, where the recruits were observed with adults. However, there was no sign of small snails occurrence in case of B. glabrata and B. alexandrina during autumn, winter and spring and disappear during summer at Giza. Meanwhile they completely absent during all seasons at Baheria Governorate. Chemical analysis of some heavy metals of water samples collected from lined and unlined sites from Baheria and Giza governorates during autumn, winter and spring were approximately as the same in both lined and unlined water bodies. However, Zn and Fe were higher in lined sites (0.78±0.37and 17.4 ± 4.3, respectively) than that of unlined ones (0.4±0.1 and 10.95 ± 1.93, respectively) and Cu was absent in both lined and unlined sites during summer at Baheria governorate. At Giza, Cu and Pb were absent and Fe were higher in lined sites (4.7± 4.2) than that of unlined ones (2.5 ± 1.4) during summer. Statistical analysis showed that no significant difference in all physico-chemical parameters of water in lined and unlined water bodies at the two tested habitats during all seasons. However, it was found that the water conductivity and TDS showed a lower mean values in lined sites than those of unlined ones. Thus, the present obtained data support the concept of utilizing environmental modification such as lining of water courses to help in minimizing the population density of certain vector snails and consequently reduce the transmission of snails born diseases.Keywords: lining, fresh water, snails, watercourses
Procedia PDF Downloads 2542398 Fathers and Daughters: Their Relationship and Its Impact on Body Image and Mental Health
Authors: John Toussaint
Abstract:
Objective: Our society is suffering from an epidemic of body image dissatisfaction, and related disorders appear to be increasing globally for children. There is much to indicate that children's body image and eating attitudes are being affected negatively by socio-cultural factors such as parents, peers and media. Most studies and theories, however, have focused extensively on the daughter-mother relationship. Very few studies have investigated the role of attachment to the father as an important factor in the development of girls’ and women’s attitudes towards themselves and their bodies. Recently, data have shown that the father’s parenting style, as well as the quality of the relationship with him is crucial for the understanding of the development and persistence of body image disorders. This presentation is based on samples of participants with self-defined body image dissatisfaction, and the self-reported measures of their fathers’ parental behaviours, emotional warmth, support, or protection. Attachment theory does offer support in exploring these relationships and it is used in this presentation to assist in understanding the relationship between the father and his daughter in relation to body image and mental health. Clinical implications are also offered in respect to work with body image, eating disorders and relational therapy. Methods: As awareness of the increasing frequency of body image concerns in children grows, so too does the need for a simple, valid and reliable measure of body image. The Children's Body Image Scale (CBIS) designed in Australia, depicts seven male and females figures from which children are to choose their perceived body type and ideal body type. This was compared with a range of international body mass index (BMI) reference standards. These measures together with individual one-on-one interviews were completed by 158 children aged 7-12 years. Results: A high frequency of body image dissatisfaction was indicated in the children's responses. 55% of girls and 41% of boys said they would like to be thinner, and wished for an ideal BMI figure below the 10th percentile. This is an unhealthy and unattainable level of body fatness for the majority of children when considered in relation to the reported secular trend of their increasing average body size. Thin children were generally ranked as best and perceived as kind, happy, academically skilled, and socially successful. Fat children were perceived as unintelligent, lazy, greedy, unpopular, and unable to play physical games. Conclusions: Body image ideals and fat stereotypes are well entrenched among children. There is much to indicate that children's body image and eating attitudes are being affected negatively by sociocultural factors such as parents, peers and media. Teachers and health professionals could promote intervention programs for children involving knowledge and acceptance of genetic influences on body type; the dangerous effects of weight loss dieting; the importance of physical activity and eating healthy; and scepticism and critical analysis of mass media messages.Keywords: body image, father attachment, mental health, eating disorders
Procedia PDF Downloads 2602397 Experimental Study of Flag Flutter in Uniform Flow
Authors: A. Sadeghi, M. Sedghi, M. R. Emami Azadi, R. Gharraei Khosroshahi
Abstract:
Flags are objects with very low bending stiffness and under wind forces start to vibrate and finally to flutter. Even in lower velocities of wind their flutter can be seen. In this research physical property of fabric is determined by performing tensile tests. Then with performing laboratory experiments in wind tunnel, determination of initial flapping speed and also study of displacement amplitude at leech and calculation of their frequency would be targeted. Laboratory tests are performed in a wind tunnel and with different velocities of wind flow for specimens with different dimensions. The results show that extension of specimens' width increase flutter initiation velocity and increase of specimen length decreases it. Also by increasing wind velocity displacement amplitude at leech of specimens are decreased. This displacement has a straight relation with specimens' length and width.Keywords: flag, flutter, wind velocity, flutter amplitudes, wind tunnel
Procedia PDF Downloads 435