Search results for: expensive function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5683

Search results for: expensive function

2953 The School Threshold's Identity as a Place for Interaction: Research Project with the Participation of Elementary-School Children

Authors: Natalia Bazaiou

Abstract:

The school entrance is one of the most important places in the everyday lives of children. As an intersection between school and public realm of the city, it is characterized by gradations of porous and rigid boundaries. Depending on its function, it can serve as a threshold or as a boundary. Additionally, it is a spatial condition that facilitates a dialogue between the school and the city and draws content from both. School thresholds are important in supporting the role of the school as an important node in the city and a bridge between children's various everyday life dynamics by demonstrating prominent usage and meaning as a place that is open to the community as well as to possibilities and physical interaction. In this research, we examine the role of the "realm of the in-between" between school and city through the architecture workshops for children at Hill Memorial School in Athens, in which we explore children's perceptions, wishes, and ideas related to their familiar everyday places of transition from school to city and vice versa. Also discussed in the presentation are the writings of Herman Hertzberger, Aldo Van Eyck, Jaap Bakema and others.

Keywords: threshold, city, play, identity, cinematic tools, children, school architecture

Procedia PDF Downloads 57
2952 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal

Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova

Abstract:

Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.

Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary

Procedia PDF Downloads 477
2951 Definition, Structure, and Core Functions of the State Image

Authors: Rosa Nurtazina, Yerkebulan Zhumashov, Maral Tomanova

Abstract:

Humanity is entering an era when 'virtual reality' as the image of the world created by the media with the help of the Internet does not match the reality in many respects, when new communication technologies create a fundamentally different and previously unknown 'global space'. According to these technologies, the state begins to change the basic technology of political communication of the state and society, the state and the state. Nowadays, image of the state becomes the most important tool and technology. Image is a purposefully created image granting political object (person, organization, country, etc.) certain social and political values and promoting more emotional perception. Political image of the state plays an important role in international relations. The success of the country's foreign policy, development of trade and economic relations with other countries depends on whether it is positive or negative. Foreign policy image has an impact on political processes taking place in the state: the negative image of the countries can be used by opposition forces as one of the arguments to criticize the government and its policies.

Keywords: image of the country, country's image classification, function of the country image, country's image components

Procedia PDF Downloads 417
2950 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 41
2949 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications

Authors: Ashima Sharma, Tapan K. Chaudhuri

Abstract:

Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.

Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing

Procedia PDF Downloads 333
2948 The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study

Authors: Neda Jamalimoghadam, Naval Heydari, Maliheh Abootalebi, Maryam Kasraeian, M. Emamghoreishi , Akbarzadeh Marzieh

Abstract:

Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome.

Keywords: aromatherapy, Citrus Aurantium, premenstrual syndrome, oil, students

Procedia PDF Downloads 204
2947 Effects of Nicotine on Symptoms Associated with Attention Deficit Hyperactivity Disorder: A Systematic Literature Review

Authors: Daniella Hirwa

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is associated with several risk-taking behaviors, including drug use and smoking. Such risk-taking behaviors are often a result of an attempt to self-manage symptoms associated with ADHD. The present review investigates the effects of nicotine on symptoms associated with ADHD. This systematic literature review was conducted for 2017-2024 using keywords associated with ADHD, smoking, and nicotine. The results indicate that individuals with ADHD start smoking earlier than those without ADHD, and it is believed that this prevalence and the higher rates of smoking are due to improvements in cognitive and executive function, attention, and impulsivity due to the effect that nicotine has on dopamine release. Longitudinal studies with larger sample sizes and comprehensive health history and cognitive testing are required to gain more insight into the ways that nicotine affects ADHD symptoms and the context by which smoking is used as a method of self-treatment to help aid the development of nicotine-based treatment options that do not pose the same health risks as smoking.

Keywords: ADHD, nicotine, risk-taking behaviors, smoking

Procedia PDF Downloads 38
2946 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 263
2945 Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots

Authors: Lucy Jackson, Celyn Walters, Steve Eckersley, Mini Rai, Simon Hadfield

Abstract:

Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs.

Keywords: space robots, automated design, on-orbit operations, hardware design

Procedia PDF Downloads 57
2944 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading

Authors: K. Rajalakshmi, A. Vasudevan

Abstract:

The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.

Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug

Procedia PDF Downloads 274
2943 Molecular Dynamics Simulation of Beta-Glucosidase of Streptomyces

Authors: Adam Abate, Elham Rasti, Philip Romero

Abstract:

Beta-glucosidase is the key enzyme component present in cellulase and completes the final step during cellulose hydrolysis by converting the cellobiose to glucose. The regulatory properties of beta-glucosidases are most commonly found for the retaining and inverting enzymes. Hydrolysis of a glycoside typically occurs with general acid and general base assistance from two amino acid side chains, normally glutamic or aspartic acids. In order to obtain more detailed information on the dynamic events origination from the interaction with enzyme active site, we carried out molecular dynamics simulations of beta-glycosidase in protonated state (Glu-H178) and deprotonated state (Glu178). The theoretical models generated from our molecular dynamics simulations complement and advance the structural information currently available, leading to a more detailed understanding of Beta-glycosidase structure and function. This article presents the important role of Asn307 in enzyme activity of beta-glucosidase

Keywords: Beta-glucosidase, GROMACS, molecular dynamics simulation, structural parameters

Procedia PDF Downloads 381
2942 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 300
2941 Bifurcation Curve for Semipositone Problem with Minkowski-Curvature Operator

Authors: Shao-Yuan Huang

Abstract:

We study the shape of the bifurcation curve of positive solutions for the semipositone problem with the Minkowski-curvature operator. The Minkowski-curvature problem plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity. In addition, it is well known that studying the multiplicity of positive solutions is equivalent to studying the shape of the bifurcation curve. By the shape of the bifurcation curve, we can understand the change in the multiplicity of positive solutions with varying parameters. In this paper, our main technique is a time-map method used in Corsato's PhD Thesis. By this method, studying the shape of the bifurcation curve is equivalent to studying the shape of a certain function T with improper integral. Generally speaking, it is difficult to study the shape of T. So, in this paper, we consider two cases that the nonlinearity is convex or concave. Thus we obtain the following results: (i) If f''(u) < 0 for u > 0, then the bifurcation curve is C-shaped. (ii) If f''(u) > 0 for u > 0, then there exists η>β such that the bifurcation curve does not exist for 0 η. Furthermore, we prove that the bifurcation is C-shaped for L > η under a certain condition.

Keywords: bifurcation curve, Minkowski-curvature problem, positive solution, time-map method

Procedia PDF Downloads 82
2940 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 305
2939 The Diagnostic Utility and Sensitivity of the Xpert® MTB/RIF Assay in Diagnosing Mycobacterium tuberculosis in Bone Marrow Aspirate Specimens

Authors: Nadhiya N. Subramony, Jenifer Vaughan, Lesley E. Scott

Abstract:

In South Africa, the World Health Organisation estimated 454000 new cases of Mycobacterium tuberculosis (M.tb) infection (MTB) in 2015. Disseminated tuberculosis arises from the haematogenous spread and seeding of the bacilli in extrapulmonary sites. The gold standard for the detection of MTB in bone marrow is TB culture which has an average turnaround time of 6 weeks. Histological examinations of trephine biopsies to diagnose MTB also have a time delay owing mainly to the 5-7 day processing period prior to microscopic examination. Adding to the diagnostic delay is the non-specific nature of granulomatous inflammation which is the hallmark of MTB involvement of the bone marrow. A Ziehl-Neelson stain (which highlights acid-fast bacilli) is therefore mandatory to confirm the diagnosis but can take up to 3 days for processing and evaluation. Owing to this delay in diagnosis, many patients are lost to follow up or remain untreated whilst results are awaited, thus encouraging the spread of undiagnosed TB. The Xpert® MTB/RIF (Cepheid, Sunnyvale, CA) is the molecular test used in the South African national TB program as the initial diagnostic test for pulmonary TB. This study investigates the optimisation and performance of the Xpert® MTB/RIF on bone marrow aspirate specimens (BMA), a first since the introduction of the assay in the diagnosis of extrapulmonary TB. BMA received for immunophenotypic analysis as part of the investigation into disseminated MTB or in the evaluation of cytopenias in immunocompromised patients were used. Processing BMA on the Xpert® MTB/RIF was optimised to ensure bone marrow in EDTA and heparin did not inhibit the PCR reaction. Inactivated M.tb was spiked into the clinical bone marrow specimen and distilled water (as a control). A volume of 500mcl and an incubation time of 15 minutes with sample reagent were investigated as the processing protocol. A total of 135 BMA specimens had sufficient residual volume for Xpert® MTB/RIF testing however 22 specimens (16.3%) were not included in the final statistical analysis as an adequate trephine biopsy and/or TB culture was not available. Xpert® MTB/RIF testing was not affected by BMA material in the presence of heparin or EDTA, but the overall detection of MTB in BMA was low compared to histology and culture. Sensitivity of the Xpert® MTB/RIF compared to both histology and culture was 8.7% (95% confidence interval (CI): 1.07-28.04%) and sensitivity compared to histology only was 11.1% (95% CI: 1.38-34.7%). Specificity of the Xpert® MTB/RIF was 98.9% (95% CI: 93.9-99.7%). Although the Xpert® MTB/RIF generates a faster result than histology and TB culture and is less expensive than culture and drug susceptibility testing, the low sensitivity of the Xpert® MTB/RIF precludes its use for the diagnosis of MTB in bone marrow aspirate specimens and warrants alternative/additional testing to optimise the assay.

Keywords: bone marrow aspirate , extrapulmonary TB, low sensitivity, Xpert® MTB/RIF

Procedia PDF Downloads 156
2938 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 238
2937 Development of an Efficient Algorithm for Cessna Citation X Speed Optimization in Cruise

Authors: Georges Ghazi, Marc-Henry Devillers, Ruxandra M. Botez

Abstract:

Aircraft flight trajectory optimization has been identified to be a promising solution for reducing both airline costs and the aviation net carbon footprint. Nowadays, this role has been mainly attributed to the flight management system. This system is an onboard multi-purpose computer responsible for providing the crew members with the optimized flight plan from a destination to the next. To accomplish this function, the flight management system uses a variety of look-up tables to compute the optimal speed and altitude for each flight regime instantly. Because the cruise is the longest segment of a typical flight, the proposed algorithm is focused on minimizing fuel consumption for this flight phase. In this paper, a complete methodology to estimate the aircraft performance and subsequently compute the optimal speed in cruise is presented. Results showed that the obtained performance database was accurate enough to predict the flight costs associated with the cruise phase.

Keywords: Cessna Citation X, cruise speed optimization, flight cost, cost index, and golden section search

Procedia PDF Downloads 275
2936 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 114
2935 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 101
2934 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: petroleum cokes, low NOx, combustion, equivalence ratio

Procedia PDF Downloads 608
2933 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 557
2932 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies

Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo

Abstract:

Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.

Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants

Procedia PDF Downloads 289
2931 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal

Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu

Abstract:

Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.

Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization

Procedia PDF Downloads 379
2930 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve

Procedia PDF Downloads 179
2929 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides

Procedia PDF Downloads 183
2928 Early Detection of Lymphedema in Post-Surgery Oncology Patients

Authors: Sneha Noble, Rahul Krishnan, Uma G., D. K. Vijaykumar

Abstract:

Breast-Cancer related Lymphedema is a major problem that affects many women. Lymphedema is the swelling that generally occurs in the arms or legs caused by the removal of or damage to lymph nodes as a part of cancer treatment. Treating it at the earliest possible stage is the best way to manage the condition and prevent it from leading to pain, recurrent infection, reduced mobility, and impaired function. So, this project aims to focus on the multi-modal approaches to identify the risks of Lymphedema in post-surgical oncology patients and prevent it at the earliest. The Kinect IR Sensor is utilized to capture the images of the body and after image processing techniques, the region of interest is obtained. Then, performing the voxelization method will provide volume measurements in pre-operative and post-operative periods in patients. The formation of a mathematical model will help in the comparison of values. Clinical pathological data of patients will be investigated to assess the factors responsible for the development of lymphedema and its risks.

Keywords: Kinect IR sensor, Lymphedema, voxelization, lymph nodes

Procedia PDF Downloads 119
2927 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas

Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus

Abstract:

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution

Procedia PDF Downloads 412
2926 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: geogrid, soil, interface, cyclic loading, pullout, large scale testing

Procedia PDF Downloads 607
2925 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure

Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard

Abstract:

In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.

Keywords: cavity, natural convection, Nusselt number, wavy wall

Procedia PDF Downloads 454
2924 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 270