Search results for: yield traits
261 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities
Authors: Paul J. McKay
Abstract:
Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)
Procedia PDF Downloads 69260 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)
Authors: Devon Simpson
Abstract:
Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming
Procedia PDF Downloads 193259 Personalized Infectious Disease Risk Prediction System: A Knowledge Model
Authors: Retno A. Vinarti, Lucy M. Hederman
Abstract:
This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk
Procedia PDF Downloads 242258 (Mis) Communication across the Borders: Politics, Media, and Public Opinion in Turkey
Authors: Banu Baybars Hawks
Abstract:
To date, academic attention in social sciences remains inadequate with regard to research and analysis of public opinion in Turkey. Most of the existing research has assessed the public opinion during political election periods. Therefore, it is of great interest to find out what the public thinks about current issues in Turkey, and how to interpret the results to be able to reveal whether they may have any reflections on social, political, and cultural structure of the country. Accordingly, the current study seeks to fill the gap in the social sciences literature in English regarding Turkey’s social and political stand which may be perceived to be very different by other nations. Without timely feedback from public surveys, various programs for improving different services and institutions functioning in the country might not achieve their expected goal, nor can decisions about which programs to implement be made rationally. Additionally, the information gathered may not only yield important insights into public’s opinion regarding current agenda in Turkey, but also into the correlates shaping public policies. Agenda-setting studies including agenda-building, agenda melding, reversed agenda-setting and information diffusion studies will be used to explain the roles of factors and actors in the formation of public opinion in Turkey. Knowing the importance of public agenda in the agenda setting and building process, this paper aims to reveal the social and political tendencies of the Turkish public. For that purpose, a survey will be carried out in December of 2014 to determine the social and political trends in Turkey for that same year. The subjects for the study, which utilize a questionairre in one-on-one interviews, will include 1,000 individuals aged 18 years and older from 26 cities representing general population. A stratified random sampling frame will be used. The topics covered by the survey include: The most important current problem in Turkey; the Economy; Terror; Approaches to the Kurdish Issue; Evaluations of the Government and Opposition Parties; Evaluations of Institutional Efficiency; Foreign Policy; the Judicial System/Constitution; Democracy and the Media; and, Social Relations/Life in Turkey. Since the beginning of the 21st century, Turkey has been undergoing a rapid transformation. The reflections of the changes can be seen in all areas from economics to politics. It is my hope that findings of this study may shed light on the important aspects of institutions, variables setting the agenda, and formation process of public opinion in Turkey.Keywords: public opinion, media, agenda setting, information diffusion, government, freedom, Turkey
Procedia PDF Downloads 467257 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol
Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher
Abstract:
Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.Keywords: antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC, minimum inhibitory concentration
Procedia PDF Downloads 168256 Bridging the Gap and Widening the Divide
Authors: Lerato Dixon, Thorsten Chmura
Abstract:
This paper explores whether ethnic identity in Zimbabwe leads to discriminatory behaviour and the degree to which a norm-based intervention can shift this discriminatory behaviour. Social Identity Theory suggests that group identity can lead to favouritism towards the in-group and discriminatory behaviour towards the out-group. Agents yield higher utility from maintaining positive self-esteem by confirming with group behaviour. This paper focuses on the two majority ethnic groups in Zimbabwe – the Ndebele and Shona. Racial identities are synonymous with the language spoken. Zimbabwe’s history highlights how identity formation took place. As following independence, political parties became recognised as either Ndebele or Shona-speaking. It is against this backdrop that this study investigates the degree to which norm-based nudge can alter behaviour. This paper uses experimental methods to analyse discriminatory behaviour between two naturally occurring ethnic groups in Zimbabwe. In addition, we investigate if social norm-based interventions can shift discriminatory behaviour to understand if the divide between these two identity groups can be further divided or healed. Participants are randomly assigned into three groups to receive information regarding a social norm. We compare the effect of a proscriptive social norm-based intervention, stating what shouldn't be done and prescriptive social norms as interventions, stating what should be done. Specifically, participants are either shown the socially appropriate (Heal) norm, the socially inappropriateness (Divide) norm regarding interethnic marriages or no norm-based intervention. Following the random assignment into intervention groups, participants take part in the Trust Game. We conjecture that discrimination will shift in accordance with the prevailing social norm. Instead, we find evidence of interethnic discriminatory behaviour. We also find that trust increases when interacting with Ndebele, Shona and Zimbabwean participants following the Heal intervention. However, if the participant is Shona, the Heal intervention decreases trust toward in-groups and Zimbabwean co-players. On the other hand, if the participant is Shona, the Divide treatment significantly increases trust toward Ndebele participants. In summary, we find evidence that norm-based interventions significantly change behaviour. However, the prescriptive norm-based intervention (Heal) decreases trust toward the in-group, out-group and national identity group if the participant is Shona – therefore having an adverse effect. In contrast, the proscriptive Divide treatment increases trust if the participant is Shona towards Ndebele co-players. We conclude that norm-based interventions have a ‘rebound’ effect by altering behaviour in the opposite direction.Keywords: discrimination, social identity, social norm-based intervention, zimbabwe
Procedia PDF Downloads 250255 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents
Authors: Jineetkumar Gawad, Chandrakant Bonde
Abstract:
Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis
Procedia PDF Downloads 154254 Bioconversion of Antifungal Antibiotic Derived from Aspergillus Nidulans
Authors: Savitha Janakiraman, Shivakumar M. C
Abstract:
Anidulafungin, an advanced class of antifungal agent used for the treatment of chronic fungal infections, is derived from Echinocandin B nucleus, an intermediate metabolite of Echinocandin B produced by Aspergillus nidulans. The enzyme acylase derived from the fermentation broth of Actinoplanes utahensis (NRRL 12052) plays a key role in the bioconversion of echinocandin B to echinocandin B nucleus. The membrane-bound nature of acylase and low levels of expression contributes to the rate-limiting process of enzymatic deacylation, hence low yields of ECB nucleus and anidulafungin. In the present study, this is addressed through novel genetic engineering approaches of overexpression and heterologous expression studies, immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) and Co-cultivation studies. Overexpression of the acylase gene in Actinoplanes utahensis (NRRL 12052) was done by increasing the gene copy number to increase the echinocandin B nucleus production. Echinocandin B acylase gene, under the control of a PermE* promoter, was cloned in pSET152 vector and introduced into Actinoplanes utahensis (NRRL12052) by a ɸC31-directed site-specific recombination method. The resultant recombinant strain (C2-18) showed a 3-fold increase in acylase expression, which was confirmed by HPLC analysis. Pichia pastoris is one of the most effective and versatile host systems for the production of heterologous proteins. The ECB acylase gene was cloned into pPIC9K vector with AOX1 promoter and was transformed into Pichia pastoris (GS115). The acylase expression was confirmed by protein expression and bioconversion studies. The heterologous expression of acylase in Pichia pastoris, is a milestone in the development of antifungals. Actively growing cells of Actinoplanes utahensis (NRRL 12052) were immobilized and tested for bioconversion ability which showed >90% conversion in each cycle. The stability of immobilized cell beads retained the deacylation ability up to 60 days and reusability was confirmed up to 4 cycles. The significant findings from the study have revealed that immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) could be an alternative option for bioconversion of echinocandin B to echinocandin B nucleus, which has not been reported to date. The concept of co-cultivation of Aspergillus nidulans and Actinoplanes utahensis strains for the production of the echinocandin B nucleus was also carried out in order to produce echinocandin B nucleus. The process completely reduced the ECB purification step and, therefore, could be recommended as an ingenious method to improve the yield of the ECB nucleus.Keywords: acylase, anidulafungin, antifungals, Aspergillus nidulans
Procedia PDF Downloads 107253 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel
Authors: M. El-haj, Z. Olama, H. Holail
Abstract:
Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi
Procedia PDF Downloads 411252 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities
Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra
Abstract:
Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics
Procedia PDF Downloads 143251 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)
Authors: Nurdan Olguncelik Kaplan, Aysen Akay
Abstract:
Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.Keywords: buckwheat, cadmium, phytoremediation, zinc
Procedia PDF Downloads 417250 Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods
Authors: Udeshika Yapa Bandara, Chamindri Witharana, Preethi Soysa
Abstract:
Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity.Keywords: antioxidant activity, flavonoids, polyphenols, pomegranate
Procedia PDF Downloads 161249 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods
Authors: Shima Nabinejad, Holger Schüttrumpf
Abstract:
Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges
Procedia PDF Downloads 257248 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide
Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee
Abstract:
The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance
Procedia PDF Downloads 188247 Improving Part-Time Instructors’ Academic Outcomes with Gamification
Authors: Jared R. Chapman
Abstract:
This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.Keywords: gamification, engagement, motivation, academic outcomes
Procedia PDF Downloads 69246 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets
Authors: Ece Cigdem Mutlu, Burak Alakent
Abstract:
Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.Keywords: average run length, M-estimators, quality control, robust estimators
Procedia PDF Downloads 190245 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry
Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka
Abstract:
The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.Keywords: Antioxidant, free radicals, herbs, phenolic, spices
Procedia PDF Downloads 256244 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin
Abstract:
Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.Keywords: fire hazards, toxic gases, self-assembly, epoxy
Procedia PDF Downloads 173243 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology
Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth
Abstract:
The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery
Procedia PDF Downloads 451242 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 99241 The Role of Glyceryl Trinitrate (GTN) in 99mTc-HIDA with Morphine Provocation Scan for the Investigation of Type III Sphincter of Oddi Dysfunction (SOD)
Authors: Ibrahim M Hassan, Lorna Que, Michael Rutland
Abstract:
Type I SOD is usually diagnosed by anatomical imaging such as ultrasound, CT and MRCP. However, the types II and III SOD yield negative results despite the presence of significant symptoms. In particular, the type III is difficult to diagnose due to the absence of significant biochemical or anatomical abnormalities. Nuclear Medicine can aid in this diagnostic dilemma by demonstrating functional changes in the bile flow. Low dose Morphine (0.04mg/Kg) stimulates the tone of the sphincter of Oddi (SO) and its usefulness has been shown in diagnosing SOD by causing a delay in bile flow when compared to a non morphine provoked - baseline scan. This work expands on that process by using sublingual GTN at 60 minutes post tracer and morphine injection to relax the SO and induce an improvement in bile outflow, and in some cases show immediate relief of morphine induced abdominal pain. The criteria for positive SOD are as follows: if during the first hour of the morphine provocation showed (1) delayed intrahepatic biliary ducts tracer accumulation; plus (2) delayed appearance but persistent retention of activity in the common bile duct, and (3) delayed bile flow into the duodenum. In addition, patients who required GTN within the first hour to relieve abdominal pain were regarded as highly supportive of the diagnosis. Retrospective analysis of 85 patients (pts) (78F and 6M) referred for suspected SOD (type III) who had been intensively investigated because of recurrent right upper quadrant or abdominal pain post cholecystectomy. 99mTc-HIDA scan with morphine-provocation is performed followed by GTN at 60 minutes post tracer injection and a further thirty minutes of dynamic imaging are acquired. 30 pts were negative. 55 pts were regarded as positive for SOD and 38/55 (60%) of these patients with an abnormal result were further evaluated with a baseline 99mTc-HIDA. As expected, all 38 pts showed better bile flow characteristics than during the morphine provocation. 20/55 (36%) patients were treated by ERCP sphincterotomy and the rest were managed conservatively by medical therapy. In all cases regarded as positive for SOD, the sublingual GTN at 60 minutes showed immediate improvement in bile flow. 11/55(20%) who developed severe post-morphine abdominal pain were relieved by GTN almost instantaneously. We propose that GTN is a useful agent in the diagnosis of SOD when performing 99mTc-HIDA scan and that the satisfactory response to the sublingual GTN could offer additional information in patients who have severe pain at the time the procedure or when presenting to the emergency unit because of biliary pain. And also in determining whether a trial of medical therapy may be used before considering surgery.Keywords: GTN, HIDA, MORPHINE, SOD
Procedia PDF Downloads 304240 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments
Authors: Manjinder Singh, Jasvinder Singh
Abstract:
Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite
Procedia PDF Downloads 526239 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 86238 Creativity in the Dark: A Qualitative Study of Cult’s Members Battle between True and False Self in Heterotopia
Authors: Shirly Bar-Lev, Michal Morag
Abstract:
Cults are usually thought of as suppressive organizations, where creativity is systematically stifled. Except for few scholars, creativity in cults remains an uncharted terrain (Boeri and Pressley, 2010). This paperfocuses on how cult members sought real and imaginary spaces to express themselves and even used their bodies as canvases on which to assert their individuality, resistance, devotion, pain, and anguish. We contend that cult members’ creativity paves their way out of the cult. This paper is part of a larger study into the experiences of former members of cults and cult-like NewReligiousMmovements (NRM). The research is based on in-depth interviews conducted with thirtyIsraeli men and women, aged 24 to 50, who either joined an NRM or were born into one. Their stories reveal that creativity is both emplaced and embedded in power relations. That is why Foucault’s idea of Heterotopia and Winnicott’s idea of the battle between True and False self canbenefit our understanding of how cult members creatively assert their autonomy over their bodies and thoughts while in the cult. Cults’ operate on a complex tension between submission and autonomy. On the one hand, they act as heterotopias byallowing for a ‘simultaneousmythic and real contestation of the space in which we live. Ascounter-hegemonic sites, they serve as‘the greatest reserve of theimagination’, to use Foucault’s words. Cults definitely possesselements of mystery, danger, and transgression where an alternative social ordering can emerge. On the other hand, cults are set up to format alternative identities. Often, the individuals who inhibit these spaces look for spiritual growth, self-reflection, and self-actualization. They might willingly relinquish autonomy over vast aspects of their lives in pursuit of self-improvement. In any case, cultsclaim the totality of their members’ identities and absolute commitment and compliance with the cult’s regimes. It, therefore, begs the question how the paradox between autonomy and submissioncan spur instances of creativity. How can cult members escape processes of performative regulation to assert their creative self? Both Foucault and Winnicott recognize the possibility of an authentic self – one that is spontaneous and creative. Both recognize that only the true self can feel real andmust never comply. Both note the disciplinary regimes that push the true self into hiding, as well as the social and psychological mechanisms that individuals develop to protect their true self. But while Foucault spoke of the power of critic as a way of salvaging the true self, Winnicott spoke of recognition and empathy - feeling known by others. Invitinga dialogue between the two theorists can yield a productive discussion on how cult members assert their ‘true self’ to cultivate a creative self within the confines of the cult.Keywords: cults, creativity, heterotopia, true and false self
Procedia PDF Downloads 88237 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy
Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler
Abstract:
Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer
Procedia PDF Downloads 307236 Utilization of Bio-Glycerol to Synthesize Fuel Additive in Presence of Modified Mesoporous Heterogeneous Catalysts
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Sandeep K. Saxena
Abstract:
The fast growth rate of energy consumption along with world population expected to demand 50% more energy by 2030 than nowadays. At present, the energy demand is mostly provided by limited fossil fuel sources such as oil, natural gas, and coal that are resulting in dramatic increase in CO2 emissions from combustion of fossil fuels. The growth of the biodiesel industry over the last decade has resulted in a price drop because glycerol is obtained as a by-product during transesterification of vegetable oil or animal fats, which accounts for one tenth of every gallon of biodiesel produced. The production of oxygenates from glycerol gains much importance due to the excellent diesel-blending property of the oxygenates that not only improve the quality of the fuel but also increases the overall yield of the biodiesel in helping to meet the target for energy production from renewable sources for transport in the energy utilization directives. The reaction of bio-glycerol with bio-acetone was carried out in a magnetically stirred two necked round bottom flaskS. Condensation of bio-glycerol with acetone in the presence of various modified forms of beta zeolite has been done for synthesizing solketal (AB-2 modified with nitric acid, AB-3 modified with oxalic acid). Among all modified forms of beta zeolite, AB-2 showed the best performance for maximum glycerol conversion 94.26 % with 94.21 % solketal selectivity and minimum acetal formation 0.05 %. The physiochemical properties of parent beta zeolite and all its modified forms were analyzed by XRD, SEM, TEM, BET, FTIR and TPD. It has been revealed that AB-2 catalysts with high pore volume and surface area gave high glycerol conversion with maximum solketal selectivity. Despite this, the crystallinity of AB-3 was lower than AB-2 which helps to provide the shorter path length for reactants and product but due high pore volume AB-2 was preferred which gave maximum bio-glycerol conversion. Temperature does matter the glycerol conversion and selectivity of solketal, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. AB-2 was found to be highly stable as up to 4 repeated experimental runs there was less than 10% decrease in its activity. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: beta-zeolite, bio-glycerol, catalyst, solketal
Procedia PDF Downloads 214235 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant
Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula
Abstract:
Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning
Procedia PDF Downloads 134234 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS
Authors: Eunsu Jang, Kang Park
Abstract:
In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis
Procedia PDF Downloads 401233 Congenital Diaphragmatic Hernia Outcomes in a Low-Volume Center
Authors: Michael Vieth, Aric Schadler, Hubert Ballard, J. A. Bauer, Pratibha Thakkar
Abstract:
Introduction: Congenital diaphragmatic hernia (CDH) is a condition characterized by the herniation of abdominal contents into the thoracic cavity requiring postnatal surgical repair. Previous literature suggests improved CDH outcomes at high-volume regional referral centers compared to low-volume centers. The purpose of this study was to examine CDH outcomes at Kentucky Children’s Hospital (KCH), a low-volume center, compared to the Congenital Diaphragmatic Hernia Study Group (CDHSG). Methods: A retrospective chart review was performed at KCH from 2007-2019 for neonates with CDH, and then subdivided into two cohorts: those requiring ECMO therapy and those not requiring ECMO therapy. Basic demographic data and measures of mortality and morbidity including ventilator days and length of stay were compared to the CDHSG. Measures of morbidity for the ECMO cohort including duration of ECMO, clinical bleeding, intracranial hemorrhage, sepsis, need for continuous renal replacement therapy (CRRT), need for sildenafil at discharge, timing of surgical repair, and total ventilator days were collected. Statistical analysis was performed using IBM SPSS Statistics version 28. One-sample t-tests and one-sample Wilcoxon Signed Rank test were utilized as appropriate.Results: There were a total of 27 neonatal patients with CDH at KCH from 2007-2019; 9 of the 27 required ECMO therapy. The birth weight and gestational age were similar between KCH and the CDHSG (2.99 kg vs 2.92 kg, p =0.655; 37.0 weeks vs 37.4 weeks, p =0.51). About half of the patients were inborn in both cohorts (52% vs 56%, p =0.676). KCH cohort had significantly more Caucasian patients (96% vs 55%, p=<0.001). Unadjusted mortality was similar in both groups (KCH 70% vs CDHSG 72%, p =0.857). Using ECMO utilization (KCH 78% vs CDHSG 52%, p =0.118) and need for surgical repair (KCH 95% vs CDHSG 85%, p =0.060) as proxy for severity, both groups’ mortality were comparable. No significant difference was noted for pulmonary outcomes such as average ventilator days (KCH 43.2 vs. CDHSG 17.3, p =0.078) and home oxygen dependency (KCH 44% vs. CDHSG 24%, p =0.108). Average length of hospital stay for patients treated at KCH was similar to CDHSG (64.4 vs 49.2, p=1.000). Conclusion: Our study demonstrates that outcome in CDH patients is independent of center’s case volume status. Management of CDH with a standardized approach in a low-volume center can yield similar outcomes. This data supports the treatment of patients with CDH at low-volume centers as opposed to transferring to higher-volume centers.Keywords: ECMO, case volume, congenital diaphragmatic hernia, congenital diaphragmatic hernia study group, neonate
Procedia PDF Downloads 96232 The Impact of Mycotoxins on the Anaerobic Digestion Process
Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold
Abstract:
Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.Keywords: Anaerobic digestion, Biogas, Feedstock conservation, Fungal mycotoxins, Inhibition, process failure
Procedia PDF Downloads 130