Search results for: third party monitoring software
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8062

Search results for: third party monitoring software

5362 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
5361 Elevating Environmental Impact Assessment through Remote Sensing in Engineering

Authors: Spoorthi Srupad

Abstract:

Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors.

Keywords: environmental impact assessment, engineering applications, sustainability, environmental monitoring, remote sensing, geographic information systems, environmental management

Procedia PDF Downloads 92
5360 Mobile Cloud Middleware: A New Service for Mobile Users

Authors: K. Akherfi, H. Harroud

Abstract:

Cloud Computing (CC) and Mobile Cloud Computing (MCC) have advanced rapidly the last few years. Today, MCC undergoes fast improvement and progress in terms of hardware (memory, embedded sensors, power consumption, touch screen, etc.) software (more and more sophisticated mobile applications) and transmission (higher data transmission rates achieved with different technologies such as 3Gs). This paper presents a review on the concept of CC and MCC. Then, it discusses what has been done regarding middleware in CC and MCC. Later, it shows the architecture of our proposed middleware along with its functionalities which will be provided to mobile clients in order to overcome the well-known problems (such as low battery power, slow CPU speed and, little memory etc.).

Keywords: context-aware, cloud computing, middleware, mobile cloud computing

Procedia PDF Downloads 448
5359 Optimal Energy Consumption with Semiconductor Lamps

Authors: Pejman Hosseiniun, Rose Shayeghi, Alireza Farzaneh, Abolghasem Ghasempour

Abstract:

Using LED lamps as lighting resources with new technology in designing lighting systems has been studied in this article. In this respect a history of LED emergence, its different manufacturing methods and technologies were revised, then their structure, light production line, its application and benefits in lighting industry has been evaluated. Finally, there is a comparison between these lamps and ordinary lamps to assess light parameters as well as energy consumption using DIALux software. Considering the results of analogies LED lamps have lower consumption and more lighting yield, therefore they are more economically feasible. Color variety, longer usage lap (circa 10 years) and compatibility with DC voltages are other LED lamps perquisites.

Keywords: LED, lighting efficiency, lighting intensity, luminance

Procedia PDF Downloads 594
5358 Assessment of Occupational Health and Safety Conditions of Health Care Workers in Barangay Health Centers in a Selected City in Metro Manila

Authors: Deinzel R. Uezono, Vivien Fe F. Fadrilan-Camacho, Bianca Margarita L. Medina, Antonio Domingo R. Reario, Trisha M. Salcedo, Luke Wesley P. Borromeo

Abstract:

The environment of health care workers is considered one of the most hazardous settings due to the nature of their work. In developing countries especially, the Philippines, this continues to be overlooked in terms of programs and services on occupational health and safety (OHS). One possible reason for this is the existing information gap on OHS which limits data comparability and impairs effective monitoring and assessment of interventions. To address this gap, there is a need to determine the current conditions of Filipino health care workers in their workplace. This descriptive cross-sectional study assessed the occupational health and safety conditions of health care workers in barangay health centers in a selected city in Metro Manila, Philippines by: (1) determining the hazards present in the workplace; (2) determining the most common self-reported medical problems; and (3) describing the elements of an OHS system based on the six building blocks of health system. Assessment was done through walkthrough survey, self-administered questionnaire, and key informant interview. Data analysis was done using Epi Info 7 and NVivo 11. Results revealed different health hazards present in the workplace particularly biological hazards (exposure to sick patients and infectious specimens), physical hazards (inadequate space and/or lighting), chemical hazards (toxic reagents and flammable chemicals), and ergonomic hazards (activities requiring repetitive motion and awkward posture). Additionally, safety hazards (improper capping of syringe and lack of fire safety provisions) were also observed. Meanwhile, the most commonly self-reported chronic diseases among health care workers (N=336) were hypertension (20.24%, n=68) and diabetes (12.50%, n=42). Top commonly self-reported symptoms were colds (66.07%, n=222), coughs (63.10%, n=212), headache (55.65%, n=187), and muscle pain (50.60%, n=170) while other diseases were influenza (16.96%, n=57) and UTI (15.48%, n=52). In terms of the elements of the OHS system, a general policy on occupational health and safety was found to be lacking and in effect, an absence of health and safety committee overseeing the implementing and monitoring of the policy. No separate budget specific for OHS programs and services was also found to be a limitation. As a result, no OHS personnel and trainings/seminar were identified. No established information system for OHS was in place. In conclusion, health and safety hazards were observed to be present across the barangay health centers visited in a selected city in Metro Manila. Medical conditions identified as most commonly self-reported were hypertension and diabetes for chronic diseases; colds, coughs, headache, and muscle pain for medical symptoms; and influenza and UTI for other diseases. As for the elements of the occupational health and safety system, there was a lack in the general components of the six building blocks of the health system.

Keywords: health hazards, occupational health and safety, occupational health and safety system, safety hazards

Procedia PDF Downloads 186
5357 Omani PE Candidate Self-Reports of Learning Strategies Used to Learn Sport Skills

Authors: Nasser Al-Rawahi

Abstract:

The study aims at determining self-regulated learning strategies used by Omani physical education candidates to learn sport skills. The data were collected by a self-regulated learning theory questionnaire. The sample of the study comprised of 145 undergraduate physical education students enrolled in the department of physical education at the College of Education, Sultan Qaboos University. The findings of the study revealed that the most commonly used strategies for learning sport skills by Omani physical education candidate are ‘the effort learning strategies, planning learning strategies and evaluation learning strategies’. However, the reflection learning strategies, self-monitoring and self-efficacy learning strategies were revealed as the least used strategies by the PE candidates in learning and acquiring sport skills. Based on these findings, suggestions and recommendations for future research were provided.

Keywords: learning strategies, physical education candidates, self-regulated learning theory, Oman

Procedia PDF Downloads 614
5356 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images

Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget

Abstract:

In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).

Keywords: agricultural practices, remote sensing, rice, yield

Procedia PDF Downloads 274
5355 Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions

Authors: A. Kudrev

Abstract:

The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule.

Keywords: melting, Poly(A)-Poly(U), TMPyP4, Zn(X)TMPyP4

Procedia PDF Downloads 150
5354 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528
5353 Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent

Authors: Shashikant R. Kuchekar, Somnath D. Bhumkar, Haribhau R. Aher, Bhaskar H. Zaware, Ponnadurai Ramasami

Abstract:

A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.

Keywords: solvent extraction, PMPT, Palladium (II), spectrophotometry

Procedia PDF Downloads 461
5352 Pressure Gradient Prediction of Oil-Water Two Phase Flow through Horizontal Pipe

Authors: Ahmed I. Raheem

Abstract:

In this thesis, stratified and stratified wavy flow regimes have been investigated numerically for the oil (1.57 mPa s viscosity and 780 kg/m3 density) and water twophase flow in small and large horizontal steel pipes with a diameter between 0.0254 to 0.508 m by ANSYS Fluent software. Volume of fluid (VOF) with two phases flows using two equations family models (Realizable k-

Keywords: CFD, two-phase flow, pressure gradient, volume of fluid, large diameter, horizontal pipe, oil-water stratified and stratified wavy flow

Procedia PDF Downloads 433
5351 Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne, Amtul Qayoom

Abstract:

Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components.

Keywords: alprazolam, ACE inhibitors, RP HPLC, serum

Procedia PDF Downloads 515
5350 Degradation of Rose Bengal by UV in the Presence of NiFe2O4 Nanoparticles

Authors: H. Boucheloukh, N. Aoun, S. Rouissa, T. Sehili, F. Parrino, V. Loddo

Abstract:

Photocatalysis has made a revolution in wastewater treatment and the elimination of persistent organic pollutants. This process is based on the use of semiconductors as photocatalysts. In this study, nickel ferrite spinel (NiFe2O4) nanoparticles were successfully synthesized by the sol-gel route. The structural, morphological, elemental composition, chemical state, particle size, optical and electrochemical characterizations using powder X-ray diffraction (P-XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy (EDAX ). We tested the prepared NiFe2O4(NPS)by monitoring the degradation of Rose Bengal (RB) dye in an aqueous solution under direct sunlight irradiation. The effects of catalyst dosage and dye concentration were also considered for the effective degradation of RB dye. The optimum catalyst dosage and concentration of dye were found to be 1 g/L and 10 μM, respectively. A maximum of 80% photocatalytic degradation efficiency (DE%) was achieved at 120 min of direct sunlight irradiation.

Keywords: Rose Bengal, Nickelate, photocatalysis, irradiation

Procedia PDF Downloads 213
5349 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network

Authors: Purva Joshi, Rohit Thanki, Omar Hanif

Abstract:

Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.

Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem

Procedia PDF Downloads 203
5348 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 274
5347 A Mother’s Silent Adversary: A Case of Pregnant Woman with Cervical Cancer

Authors: Paola Millare, Nelinda Catherine Pangilinan

Abstract:

Background and Aim: Cervical cancer is the most commonly diagnosed gynecological malignancy during pregnancy. Owing to the rarity of the disease, and the complexity of all factors that have to be taken into consideration, standardization of treatment is very difficult. Cervical cancer is the second most common malignancy among women. The treatment of cancer during pregnancy is most challenging in the case of cervical cancer, since the pregnant uterus itself is affected. This report aims to present a case of cervical cancer in a pregnant woman and how to manage this case and several issues accompanied with it. Methods: This is a case of a 28 year-old, Gravida 4 Para 2 (1111), who presented with watery to mucoid, whitish, non-foul smelling and increasing in amount. Internal examination revealed normal external genitalia, parous outlet, cervix was transformed into a fungating mass measuring 5x4 cm, with left parametrial involvement, body of uterus was enlarged to 24 weeks size, no adnexal mass or tenderness. She had cervical punch biopsy, which revealed, adenocarcinoma, well-differentiated cervical tissue. Standard management for cases with stage 2B cervical carcinoma was to start radiation or radical hysterectomy. In the case of patients diagnosed with cervical cancer and currently pregnant, these kind of management will result to fetal loss. The patient still declined the said management and opted to delay the treatment and wait for her baby to reach at least term and proceed to cesarean section as route of delivery. Results: The patient underwent an elective cesarean section at 37th weeks age of gestation, with an outcome of a term, live baby boy APGAR score 7,9 birthweight 2600 grams. One month postpartum, the patient followed up and completed radiotherapy, chemotherapy and brachytherapy. She was advised to go back after 6 months for monitoring. On her last check up, an internal examination was done which revealed normal external genitalia, vagina admits 2 fingers with ease, there is a palpable fungating mass at the cervix measuring 2x2 cm. A repeat gynecologic oncologic ultrasound was done revealing cervical mass, endophytic, grade 1 color score with stromal invasion 35% post radiation reactive lymph nodes with intact paracolpium, pericervical, and parametrial involvement. The patient was then advised to undergo pelvic boost and for close monitoring of the cervical mass. Conclusion: Cervical cancer in pregnancy is rare but is a dilemma for women and their physicians. Treatment should be multidisciplinary and individualized following careful counseling. In this case, the treatment was clearly on the side of preventing the progression of cervical cancer while she is pregnant, however due to ethical reasons, the management deviates on the right of the patient to decide for her own health and her unborn child. The collaborative collection of data relating to treatment and outcome is strongly encouraged.

Keywords: cancer, cervical, ethical, pregnancy

Procedia PDF Downloads 245
5346 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System

Authors: Y. Kourd, D. Lefebvre

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.

Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis

Procedia PDF Downloads 625
5345 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 122
5344 Analysis of Changes in Land Uses Planning for Bangalore City as per Master Plans

Authors: Minakshi Goswami, M. V. Khire

Abstract:

The urban land use is an outcome of geographical and socio economic factors over the decades. Hence, spatial information on land use and possibilities of alternate use is essential for the selection, planning and implementation to meet the increasing demands of human needs and welfare of the urban area. This information assists in monitoring the land use resulting out of charging demands of increasing urban population over the decades. So in this paper, a detailed work on urban land use pattern, with a special reference to build up land in Bangalore city is analyzed in view of the various master plans from 1975to 2011. An attempt has been made to study the status of urban land use of Bangalore city during this period to detect the changes on land utilization rate that has taken place in each master plan period, particularly in the built-up land. The set of measures taken by the city corporation to contain the problems regarding the extremely bothering existing land use in Bangalore city is analyzed.

Keywords: built up land, land use changes, master plan, population

Procedia PDF Downloads 463
5343 Acoustic Analysis of Psycho-Communication Disorders within Moroccan Students

Authors: Brahim Sabir

Abstract:

Psycho-Communication disorders negatively affect the academic curriculum for students in higher education. Thus, understanding these disorders, their causes and effects will give education specialists a tool for the decision, which will lead to the resolution of problems related to the integration of students with Psycho-Communication disorders. It is in this context that a statistical study was conducted, targeting the population object of study, namely Moroccan students. Pathological voice samples were recorded and analyzed acoustically with PRAAT software, in order to build a model that will be the basis for the objective diagnostic.

Keywords: psycho-communication disorders, acoustic analysis, PRAAT

Procedia PDF Downloads 389
5342 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 90
5341 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 121
5340 Some Considerations on UML Class Diagram Formalisation Approaches

Authors: Abdullah A. H. Alzahrani, Majd Zohri Yafi, Fawaz K. Alarfaj

Abstract:

Unified Modelling Language (UML) is a software modelling language that is widely used and accepted. One significant drawback, of which, is that the language lacks formality. This makes carrying out any type of rigorous analysis difficult process. Many researchers attempt to introduce their approaches to formalize UML diagrams. However, it is always hard to decide what language and/or approach to use. Therefore, in this paper, we highlight some of the advantages and disadvantages of number of those approaches. We also try to compare different counterpart approaches. In addition, we draw some guidelines to help in choosing the suitable approach. Special concern is given to the formalization of the static aspects of UML shown is class diagrams.

Keywords: UML formalization, object constraints language, description logic, z language

Procedia PDF Downloads 434
5339 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
5338 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.

Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling

Procedia PDF Downloads 316
5337 The Increasing Importance of the Role of AI in Higher Education

Authors: Joshefina Bengoechea Fernandez, Alex Bell

Abstract:

In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.

Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics

Procedia PDF Downloads 104
5336 From Abraham to Average Man: Game Theoretic Analysis of Divine Social Relationships

Authors: Elizabeth Latham

Abstract:

Billions of people worldwide profess some feeling of psychological or spiritual connection with the divine. The majority of them attribute this personal connection to the God of the Christian Bible. The objective of this research was to discover what could be known about the exact social nature of these relationships and to see if they mimic the interactions recounted in the bible; if a worldwide majority believes that the Christian Bible is a true account of God’s interactions with mankind, it is reasonable to assume that the interactions between God and the aforementioned people would be similar to the ones in the bible. This analysis required the employment of an unusual method of biblical analysis: Game Theory. Because the research focused on documented social interaction between God and man in scripture, it was important to go beyond text-analysis methods. We used stories from the New Revised Standard Version of the bible to set up “games” using economics-style matrices featuring each player’s motivations and possible courses of action, modeled after interactions in the Old and New Testaments between the Judeo-Christian God and some mortal person. We examined all relevant interactions for the objectives held by each party and their strategies for obtaining them. These findings were then compared to similar “games” created based on interviews with people subscribing to different levels of Christianity who ranged from barely-practicing to clergymen. The range was broad so as to look for a correlation between scriptural knowledge and game-similarity to the bible. Each interview described a personal experience someone believed they had with God and matrices were developed to describe each one as social interaction: a “game” to be analyzed quantitively. The data showed that in most cases, the social features of God-man interactions in the modern lives of people were like those present in the “games” between God and man in the bible. This similarity was referred to in the study as “biblical faith” and it alone was a fascinating finding with many implications. The even more notable finding, however, was that the amount of game-similarity present did not correlate with the amount of scriptural knowledge. Each participant was also surveyed on family background, political stances, general education, scriptural knowledge, and those who had biblical faith were not necessarily the ones that knew the bible best. Instead, there was a high degree of correlation between biblical faith and family religious observance. It seems that to have a biblical psychological relationship with God, it is more important to have a religious family than to have studied scripture, a surprising insight with massive implications on the practice and preservation of religion.

Keywords: bible, Christianity, game theory, social psychology

Procedia PDF Downloads 156
5335 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel

Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki

Abstract:

The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.

Keywords: milling of hardened steel, tool wear, vibrations, machine learning

Procedia PDF Downloads 59
5334 Interaction between the Main Crack and Dislocation in the Glass Material

Authors: A. Mezzidi, H. Hamli Benzahar

Abstract:

The present study evaluates the stress and stress intensity factor during the propagation of a crack at presence of a dislocation near of crack tip. The problem is formulated using a glass material having an equivalent elasticity modulus and a Poisson ratio. In this research work, the proposed material is a plate form with a main crack in one of these ends and a dislocation near this crack, subjected to tensile stresses according to the mode 1 opening. For each distance between the two cracks, we can determine these stresses. This study is treated by finite elements method by using the software (ABAQUS) rate. It is shown here in that obtained results agreed with those determined by other researchers

Keywords: crack, dislocation, finite element, glass

Procedia PDF Downloads 372
5333 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks

Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi

Abstract:

In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.

Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks

Procedia PDF Downloads 378