Search results for: serious gaming and artificial intelligence against cybercrime
103 Nurse Participation for the Economical Effectiveness in Medical Organizations
Authors: Alua Masalimova, Dameli Sulubecova, Talgat Isaev, Raushan Magzumova
Abstract:
The usual relation to nurses of heads of medical organizations in Kazakhstan is to use them only for per performing medical manipulations, but new economic conditions require the introduction of nursing innovations. There is an increasing need for managers of hospital departments and regions of ambulatory clinics to ensure comfortable conditions for doctors, nurses, aides, as well as monitoring marketing technology (the needs and satisfaction of staff work, the patient satisfaction of the department). It is going to the past the nursing activities as physician assistant performing his prescriptions passively. We are suggesting a model for the developing the head nurse as the manager on the example of Blood Service. We have studied in the scientific-production center of blood transfusion head nurses by the standard method of interviewing for involvement in coordinating the flow of information, promoting the competitiveness of the department. Results: the average age of the respondents 43,1 ± 9,8, female - 100%; manager in the Organization – 9,3 ± 10,3 years. Received positive responses to the knowledge of the nearest offices in providing similar medical service - 14,2%. The cost of similar medical services in other competitive organizations did not know 100%, did a study of employee satisfaction Division labour-85,7% answered negatively, the satisfaction donors work staff studied in 50.0% of cases involved in attracting paid Services Division showed a 28.5% of the respondent. Participation in management decisions medical organization: strategic planning - 14,2%, forming analysis report for the year – 14,2%, recruitment-30.0%, equipment-14.2%. Participation in the social and technical designing workplaces Division staff showed 85,0% of senior nurses. Participate in the cohesion of the staff of the Division method of the team used the 10.0% of respondents. Further, we have studied the behavioral competencies for senior sisters: customer focus – 20,0% of respondents have attended, the ability to work in a team – 40,0%. Personal qualities senior nurses were apparent: sociability – 80,0%, the ability to manage information – 40,0%, to make their own decisions - 14,2%, 28,5% creativity, the desire to improve their professionalism – 50,0%. Thus, the modern market conditions dictate this organization, which works for the rights of economic management; include the competence of the post of the senior nurse knowledge and skills of Marketing Management Department. Skills to analyses the information collected and use of management offers superior medical leadership organization. The medical organization in the recruitment of the senior nurse offices take into account personal qualities: flexibility, fluency of thinking, communication skills and ability to work in a team. As well as leadership qualities, ambition, high emotional and social intelligence, that will bring out the medical unit on competitiveness within the country and abroad.Keywords: blood service, head nurse, manager, skills
Procedia PDF Downloads 244102 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 259101 Change of Education Business in the Age of 5G
Authors: Heikki Ruohomaa, Vesa Salminen
Abstract:
Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation
Procedia PDF Downloads 177100 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents
Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat
Abstract:
This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents
Procedia PDF Downloads 7199 Using ANN in Emergency Reconstruction Projects Post Disaster
Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir
Abstract:
Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management
Procedia PDF Downloads 16798 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia
Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez
Abstract:
Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium
Procedia PDF Downloads 28997 The Incidental Linguistic Information Processing and Its Relation to General Intellectual Abilities
Authors: Evgeniya V. Gavrilova, Sofya S. Belova
Abstract:
The present study was aimed at clarifying the relationship between general intellectual abilities and efficiency in free recall and rhymed words generation task after incidental exposure to linguistic stimuli. The theoretical frameworks stress that general intellectual abilities are based on intentional mental strategies. In this context, it seems to be crucial to examine the efficiency of incidentally presented information processing in cognitive task and its relation to general intellectual abilities. The sample consisted of 32 Russian students. Participants were exposed to pairs of words. Each pair consisted of two common nouns or two city names. Participants had to decide whether a city name was presented in each pair. Thus words’ semantics was processed intentionally. The city names were considered to be focal stimuli, whereas common nouns were considered to be peripheral stimuli. Along with that each pair of words could be rhymed or not be rhymed, but this phonemic aspect of stimuli’s characteristic (rhymed and non-rhymed words) was processed incidentally. Then participants were asked to produce as many rhymes as they could to new words. The stimuli presented earlier could be used as well. After that, participants had to retrieve all words presented earlier. In the end, verbal and non-verbal abilities were measured with number of special psychometric tests. As for free recall task intentionally processed focal stimuli had an advantage in recall compared to peripheral stimuli. In addition all the rhymed stimuli were recalled more effectively than non-rhymed ones. The inverse effect was found in words generation task where participants tended to use mainly peripheral stimuli compared to focal ones. Furthermore peripheral rhymed stimuli were most popular target category of stimuli that was used in this task. Thus the information that was processed incidentally had a supplemental influence on efficiency of stimuli processing as well in free recall as in word generation task. Different patterns of correlations between intellectual abilities and efficiency in different stimuli processing in both tasks were revealed. Non-verbal reasoning ability correlated positively with free recall of peripheral rhymed stimuli, but it was not related to performance on rhymed words’ generation task. Verbal reasoning ability correlated positively with free recall of focal stimuli. As for rhymed words generation task, verbal intelligence correlated negatively with generation of focal stimuli and correlated positively with generation of all peripheral stimuli. The present findings lead to two key conclusions. First, incidentally processed stimuli had an advantage in free recall and word generation task. Thus incidental information processing appeared to be crucial for subsequent cognitive performance. Secondly, it was demonstrated that incidentally processed stimuli were recalled more frequently by participants with high nonverbal reasoning ability and were more effectively used by participants with high verbal reasoning ability in subsequent cognitive tasks. That implies that general intellectual abilities could benefit from operating by different levels of information processing while cognitive problem solving. This research was supported by the “Grant of President of RF for young PhD scientists” (contract № is 14.Z56.17.2980- MK) and the Grant № 15-36-01348a2 of Russian Foundation for Humanities.Keywords: focal and peripheral stimuli, general intellectual abilities, incidental information processing
Procedia PDF Downloads 23196 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 12995 Microalgae Technology for Nutraceuticals
Authors: Weixing Tan
Abstract:
Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances
Procedia PDF Downloads 15794 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number
Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza
Abstract:
The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil
Procedia PDF Downloads 38893 The Challenges of Citizen Engagement in Urban Transformation: Key Learnings from Three European Cities
Authors: Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Olatz Nicolas Buxens, Carlo Ferretti
Abstract:
The impact of citizens in urban transformations has become increasingly important in the pursuit of creating citizen-centered cities. Citizens at the forefront of the urban transformation process are key to establishing resilient, sustainable, and inclusive cities that cater to the needs of all residents. Therefore, collecting data and information directly from citizens is crucial for the sustainable development of cities. Within this context, public participation becomes a pillar for acquiring the necessary information from citizens. Public participation in urban transformation processes establishes a more responsive, equitable, and resilient urban environment. This approach cultivates a sense of shared responsibility and collective progress in building cities that truly serve the well-being of all residents. However, the implementation of public participation practices often overlooks strategies to effectively engage citizens in the processes, resulting in non-successful participatory outcomes. Therefore, this research focuses on identifying and analyzing the critical aspects of citizen engagement during the same participatory urban transformation process in different European contexts: Ermua (Spain), Elva (Estonia) and Matera (Italy). The participatory neighborhood regeneration process is divided into three main stages, to turn social districts into inclusive and smart neighborhoods: (i) the strategic level, (ii) the design level, and (iii) the implementation level. In the initial stage, the focus is on diagnosing the neighborhood and creating a shared vision with the community. The second stage centers around collaboratively designing various action plans to foster inclusivity and intelligence while pushing local economic development within the district. Finally, the third stage ensures the proper co-implementation of the designed actions in the neighborhood. To this date, the presented results critically analyze the key aspects of engagement in the first stage of the methodology, the strategic plan, in the three above-mentioned contexts. It is a multifaceted study that incorporates three case studies to shed light on the various perspectives and strategies adopted by each city. The results indicate that despite of the various cultural contexts, all cities face similar barriers when seeking to enhance engagement. Accordingly, the study identifies specific challenges within the participatory approach across the three cities such as the existence of discontented citizens, communication gaps, inconsistent participation, or administration resistance. Consequently, key learnings of the process indicate that a collaborative sphere needs to be cultivated, educating both citizens and administrations in the aspects of co-governance, giving these practices the appropriate space and their own communication channels. This study is part of the DROP project, funded by the European Union, which aims to develop a citizen-centered urban renewal methodology to transform the social districts into smart and inclusive neighborhoods.Keywords: citizen-centred cities, engagement, public participation, urban transformation
Procedia PDF Downloads 6992 Investigation of Permeate Flux Through Direct Contact Membrane Distillation Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters
Authors: Chii-Dong Ho, Jian-Har Chen
Abstract:
The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate direct contact membrane distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment of an economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement in such as new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters
Procedia PDF Downloads 1291 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness
Abstract:
Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb
Procedia PDF Downloads 8890 Hybrid Living: Emerging Out of the Crises and Divisions
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.Keywords: social ritual scenographies, spontaneous urban landscapes, substantial hybrid entities, re-introduction of natural phenomena
Procedia PDF Downloads 26489 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools
Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami
Abstract:
The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design
Procedia PDF Downloads 7788 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate
Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki
Abstract:
Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion
Procedia PDF Downloads 31087 Trophic Variations in Uptake and Assimilation of Cadmium, Manganese and Zinc: An Estuarine Food-Chain Radiotracer Experiment
Authors: K. O’Mara, T. Cresswell
Abstract:
Nearly half of the world’s population live near the coast, and as a result, estuaries and coastal bays in populated or industrialized areas often receive metal pollution. Heavy metals have a chemical affinity for sediment particles and can be stored in estuarine sediments and become biologically available under changing conditions. Organisms inhabiting estuaries can be exposed to metals from a variety of sources including metals dissolved in water, bound to sediment or within contaminated prey. Metal uptake and assimilation responses can vary even between species that are biologically similar, making pollution effects difficult to predict. A multi-trophic level experiment representing a common Eastern Australian estuarine food chain was used to study the sources for Cd, Mn and Zn uptake and assimilation in organisms occupying several trophic levels. Sand cockles (Katelysia scalarina), school prawns (Metapenaeus macleayi) and sand whiting (Sillago ciliata) were exposed to radiolabelled seawater, suspended sediment and food. Three pulse-chase trials on filter-feeding sand cockles were performed using radiolabelled phytoplankton (Tetraselmis sp.), benthic microalgae (Entomoneis sp.) and suspended sediment. Benthic microalgae had lower metal uptake than phytoplankton during labelling but higher cockle assimilation efficiencies (Cd = 51%, Mn = 42%, Zn = 63 %) than both phytoplankton (Cd = 21%, Mn = 32%, Zn = 33%) and suspended sediment (except Mn; (Cd = 38%, Mn = 42%, Zn = 53%)). Sand cockles were also sensitive to uptake of Cd, Mn and Zn dissolved in seawater. Uptake of these metals from the dissolved phase was negligible in prawns and fish, with prawns only accumulating metals during moulting, which were then lost with subsequent moulting in the depuration phase. Diet appears to be the main source of metal assimilation in school prawns, with 65%, 54% and 58% assimilation efficiencies from Cd, Mn and Zn respectively. Whiting fed contaminated prawns were able to exclude the majority of the metal activity through egestion, with only 10%, 23% and 11% assimilation efficiencies from Cd, Mn and Zn respectively. The findings of this study support previous studies that find diet to be the dominant accumulation source for higher level trophic organisms. These results show that assimilation efficiencies can vary depending on the source of exposure; sand cockles assimilated more Cd, Mn, and Zn from the benthic diatom than phytoplankton and assimilation was higher in sand whiting fed prawns compared to artificial pellets. The sensitivity of sand cockles to metal uptake and assimilation from a variety of sources poses concerns for metal availability to predators ingesting the clam tissue, including humans. The high tolerance of sand whiting to these metals is reflected in their widespread presence in Eastern Australian estuaries, including contaminated estuaries such as Botany Bay and Port Jackson.Keywords: cadmium, food chain, metal, manganese, trophic, zinc
Procedia PDF Downloads 20386 Measuring Firms’ Patent Management: Conceptualization, Validation, and Interpretation
Authors: Mehari Teshome, Lara Agostini, Anna Nosella
Abstract:
The current knowledge-based economy extends intellectual property rights (IPRs) legal research themes into a more strategic and organizational perspectives. From the diverse types of IPRs, patents are the strongest and well-known form of legal protection that influences commercial success and market value. Indeed, from our pilot survey, we understood that firms are less likely to manage their patents and actively used it as a tool for achieving competitive advantage rather they invest resource and efforts for patent application. To this regard, the literature also confirms that insights into how firms manage their patents from a holistic, strategic perspective, and how the portfolio value of patents can be optimized are scarce. Though patent management is an important business tool and there exist few scales to measure some dimensions of patent management, at the best of our knowledge, no systematic attempt has been made to develop a valid and comprehensive measure of it. Considering this theoretical and practical point of view, the aim of this article is twofold: to develop a framework for patent management encompassing all relevant dimensions with their respective constructs and measurement items, and to validate the measurement using survey data from practitioners. Methodology: We used six-step methodological approach (i.e., specify the domain of construct, item generation, scale purification, internal consistency assessment, scale validation, and replication). Accordingly, we carried out a systematic review of 182 articles on patent management, from ISI Web of Science. For each article, we mapped relevant constructs, their definition, and associated features, as well as items used to measure these constructs, when provided. This theoretical analysis was complemented by interviews with experts in patent management to get feedbacks that are more practical on how patent management is carried out in firms. Afterwards, we carried out a questionnaire survey to purify our scales and statistical validation. Findings: The analysis allowed us to design a framework for patent management, identifying its core dimensions (i.e., generation, portfolio-management, exploitation and enforcement, intelligence) and support dimensions (i.e., strategy and organization). Moreover, we identified the relevant activities for each dimension, as well as the most suitable items to measure them. For example, the core dimension generation includes constructs as: state-of-the-art analysis, freedom-to-operate analysis, patent watching, securing freedom-to-operate, patent potential and patent-geographical-scope. Originality and the Study Contribution: This study represents a first step towards the development of sound scales to measure patent management with an overarching approach, thus laying the basis for developing a recognized landmark within the research area of patent management. Practical Implications: The new scale can be used to assess the level of sophistication of the patent management of a company and compare it with other firms in the industry to evaluate their ability to manage the different activities involved in patent management. In addition, the framework resulting from this analysis can be used as a guide that supports managers to improve patent management in firms.Keywords: patent, management, scale, development, intellectual property rights (IPRs)
Procedia PDF Downloads 14985 Seismotectonics and Seismology the North of Algeria
Authors: Djeddi Mabrouk
Abstract:
The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth
Procedia PDF Downloads 40884 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy
Authors: Mathula Thangarajh
Abstract:
Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene
Procedia PDF Downloads 9983 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 26982 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology
Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert
Abstract:
Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.Keywords: BIPV, building simulation, optimized control strategy, planning tool
Procedia PDF Downloads 11081 Prevention of Preterm Birth and Management of Uterine Contractions with Traditional Korean Medicine: Integrative Approach
Authors: Eun-Seop Kim, Eun-Ha Jang, Rana R. Kim, Sae-Byul Jang
Abstract:
Objective: Preterm labor is the most common antecedent of preterm birth(PTB), which is characterized by regular uterine contraction before 37 weeks of pregnancy and cervical change. In acute preterm labor, tocolytics are administered as the first-line medication to suppress uterine contractions but rarely delay pregnancy to 37 weeks of gestation. On the other hand, according to the Korean Traditional Medicine, PTB is caused by the deficiency of Qi and unnecessary energy in the body of the mother. The aim of this study was to demonstrate the benefit of Traditional Korean Medicine as an adjuvant therapy in management of early uterine contractions and the prevention of PTB. Methods: It is a case report of a 38-year-old woman (0-0-6-0) hospitalized for irregular uterine contractions and cervical change at 33+3/7 weeks of gestation. Past history includes chemical pregnancies achieved by Artificial Rroductive Technology(ART), one stillbirth (at 7 weeks) and a laparoscopic surgery for endometriosis. After seven trials of IVF and articificial insemination, she had succeeded in conception via in-vitro fertilization (IVF) with help of Traditional Korean Medicine (TKM) treatments. Due to irregular uterine contractions and cervical changes, 2 TKM were prescribed: Gami-Dangguisan, and Antae-eum, known to nourish blood and clear away heat. 120ml of Gami-Dangguisan was given twice a day monring and evening along with same amount of Antae-eum once a day from 31 August 2013 to 28 November 2013. Tocolytics (Ritodrine) was administered as a first aid for maintenance of pregnancy. Information regarding progress until the delivery was collected during the patient’s visit. Results: On admission, the cervix of 15mm in length and cervical os with 0.5cm-dilated were observed via ultrasonography. 50% cervical effacement was also detected in physical examination. Tocolysis had been temporarily maintained. As a supportive therapy, TKM herbal preparations(gami-dangguisan and Antae-eum) were concomitantly given. As of 34+2/7 weeks of gestation, however intermittent uterine contractions appeared (5-12min) on cardiotocography and vaginal bleeding was also smeared at 34+3/7 weeks. However, enhanced tocolytics and continuous administration of herbal medicine sustained the pregnancy to term. At 37+2/7 weeks, no sign of labor with restored cervical length was confirmed. The woman gave a term birth to a healthy infant via vaginal delivery at 39+3/7 gestational weeks. Conclusions: This is the first successful case report about a preter labor patient administered with conventional tocolytic agents as well as TKM herbal decoctions, delaying delivery to term. This case deserves attention considering it is rare to maintain gestation to term only with tocolytic intervention. Our report implies the potential of herbal medicine as an adjuvant therapy for preterm labor treatment. Further studies are needed to assess the safety and efficacy of TKM herbal medicine as a therapeutic alternative for curing preterm birth.Keywords: preterm labor, traditional Korean medicine, herbal medicine, integrative treatment, complementary and alternative medicine
Procedia PDF Downloads 37280 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 53079 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures
Authors: A. T. Al-Isawi, P. E. F. Collins
Abstract:
The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction
Procedia PDF Downloads 12378 The Role of Metaheuristic Approaches in Engineering Problems
Authors: Ferzat Anka
Abstract:
Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems
Procedia PDF Downloads 7777 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 26476 Elements of Creativity and Innovation
Authors: Fadwa Al Bawardi
Abstract:
In March 2021, the Saudi Arabian Council of Ministers issued a decision to form a committee called the "Higher Committee for Research, Development and Innovation," a committee linked to the Council of Economic and Development Affairs, chaired by the Chairman of the Council of Economic and Development Affairs, and concerned with the development of the research, development and innovation sector in the Kingdom. In order to talk about the dimensions of this wonderful step, let us first try to answer the following questions. Is there a difference between creativity and innovation..? What are the factors of creativity in the individual. Are they mental genetic factors or are they factors that an individual acquires through learning..? The methodology included surveys that have been conducted on more than 500 individuals, males and females, between the ages of 18 till 60. And the answer is. "Creativity" is the creation of a new idea, while "Innovation" is the development of an already existing idea in a new, successful way. They are two sides of the same coin, as the "creative idea" needs to be developed and transformed into an "innovation" in order to achieve either strategic achievements at the level of countries and institutions to enhance organizational intelligence, or achievements at the level of individuals. For example, the beginning of smart phones was just a creative idea from IBM in 1994, but the actual successful innovation for the manufacture, development and marketing of these phones was through Apple later. Nor does creativity have to be hereditary. There are three basic factors for creativity: The first factor is "the presence of a challenge or an obstacle" that the individual faces and seeks thinking to find solutions to overcome, even if thinking requires a long time. The second factor is the "environment surrounding" of the individual, which includes science, training, experience gained, the ability to use techniques, as well as the ability to assess whether the idea is feasible or otherwise. To achieve this factor, the individual must be aware of own skills, strengths, hobbies, and aspects in which one can be creative, and the individual must also be self-confident and courageous enough to suggest those new ideas. The third factor is "Experience and the Ability to Accept Risk and Lack of Initial Success," and then learn from mistakes and try again tirelessly. There are some tools and techniques that help the individual to reach creative and innovative ideas, such as: Mind Maps tool, through which the available information is drawn by writing a short word for each piece of information and arranging all other relevant information through clear lines, which helps in logical thinking and correct vision. There is also a tool called "Flow Charts", which are graphics that show the sequence of data and expected results according to an ordered scenario of events and workflow steps, giving clarity to the ideas, their sequence, and what is expected of them. There are also other great tools such as the Six Hats tool, a useful tool to be applied by a group of people for effective planning and detailed logical thinking, and the Snowball tool. And all of them are tools that greatly help in organizing and arranging mental thoughts, and making the right decisions. It is also easy to learn, apply and use all those tools and techniques to reach creative and innovative solutions. The detailed figures and results of the conducted surveys are available upon request, with charts showing the %s based on gender, age groups, and job categories.Keywords: innovation, creativity, factors, tools
Procedia PDF Downloads 5575 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 16674 Leveraging Advanced Technologies and Data to Eliminate Abandoned, Lost, or Otherwise Discarded Fishing Gear and Derelict Fishing Gear
Authors: Grant Bifolchi
Abstract:
As global environmental problems continue to have highly adverse effects, finding long-term, sustainable solutions to combat ecological distress are of growing paramount concern. Ghost Gear—also known as abandoned, lost or otherwise discarded fishing gear (ALDFG) and derelict fishing gear (DFG)—represents one of the greatest threats to the world’s oceans, posing a significant hazard to human health, livelihoods, and global food security. In fact, according to the UN Food and Agriculture Organization (FAO), abandoned, lost and discarded fishing gear represents approximately 10% of marine debris by volume. Around the world, many governments, governmental and non-profit organizations are doing their best to manage the reporting and retrieval of nets, lines, ropes, traps, floats and more from their respective bodies of water. However, these organizations’ ability to effectively manage files and documents about the environmental problem further complicates matters. In Ghost Gear monitoring and management, organizations face additional complexities. Whether it’s data ingest, industry regulations and standards, garnering actionable insights into the location, security, and management of data, or the application of enforcement due to disparate data—all of these factors are placing massive strains on organizations struggling to save the planet from the dangers of Ghost Gear. In this 90-minute educational session, globally recognized Ghost Gear technology expert Grant Bifolchi CET, BBA, Bcom, will provide real-world insight into how governments currently manage Ghost Gear and the technology that can accelerate success in combatting ALDFG and DFG. In this session, attendees will learn how to: • Identify specific technologies to solve the ingest and management of Ghost Gear data categories, including type, geo-location, size, ownership, regional assignment, collection and disposal. • Provide enhanced access to authorities, fisheries, independent fishing vessels, individuals, etc., while securely controlling confidential and privileged data to globally recognized standards. • Create and maintain processing accuracy to effectively track ALDFG/DFG reporting progress—including acknowledging receipt of the report and sharing it with all pertinent stakeholders to ensure approvals are secured. • Enable and utilize Business Intelligence (BI) and Analytics to store and analyze data to optimize organizational performance, maintain anytime-visibility of report status, user accountability, scheduling, management, and foster governmental transparency. • Maintain Compliance Reporting through highly defined, detailed and automated reports—enabling all stakeholders to share critical insights with internal colleagues, regulatory agencies, and national and international partners.Keywords: ghost gear, ALDFG, DFG, abandoned, lost or otherwise discarded fishing gear, data, technology
Procedia PDF Downloads 97