Search results for: production efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12711

Search results for: production efficiency

10041 Short Term Tests on Performance Evaluation of Water-Washed and Dry-Washed Biodiesel from Used Cooking Oil

Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto

Abstract:

In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.

Keywords: biodiesel, engine performance, used cooking oil, water wash, dry wash

Procedia PDF Downloads 345
10040 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator

Procedia PDF Downloads 313
10039 Barriers to Innovation Based on Environmentally Friendly Technology Adoption in Developing Countries: The Case of Production in Rural Areas in Cauca-Colombia

Authors: Deycy Janeth Sanchez Preciado, Bjorn Claes, Paola Andrade

Abstract:

The development of appropriate environmentally friendly technologies has aided communities in rural areas in emerging economies to better use their natural resources, increase productivity while reducing pollution. Moreover, it has improved their innovation capabilities and ability to develop products for new markets. However, despite the advances, the adoption of these technologies is not generalized and does not always show the expected benefits for the communities and other actors involved in the co-creation process. In this paper, we study the barriers that inhibit the adoption of technologies to reach innovation levels and study comparative cases in rural areas of Cauca in Colombia. We develop and test a theory grounded framework, and we compile an overview of the most important of barriers.

Keywords: technology adoption, environmentally friendly technology, developing countries, rural production, innovation, appropriate technology

Procedia PDF Downloads 204
10038 Maintenance Wrench Time Improvement Project

Authors: Awadh O. Al-Anazi

Abstract:

As part of the organizational needs toward successful maintaining activities, a proper management system need to be put in place, ensuring the effectiveness of maintenance activities. The management system shall clearly describes the process of identifying, prioritizing, planning, scheduling, execution, and providing valuable feedback for all maintenance activities. Completion and accuracy of the system with proper implementation shall provide the organization with a strong platform for effective maintenance activities that are resulted in efficient outcomes toward business success. The purpose of this research was to introduce a practical tool for measuring the maintenance efficiency level within Saudi organizations. A comprehensive study was launched across many maintenance professionals throughout Saudi leading organizations. The study covered five main categories: work process, identification, planning and scheduling, execution, and performance monitoring. Each category was evaluated across many dimensions to determine its current effectiveness through a five-level scale from 'process is not there' to 'mature implementation'. Wide participation was received, responses were analyzed, and the study was concluded by highlighting major gaps and improvement opportunities within Saudi organizations. One effective implementation of the efficiency enhancement efforts was deployed in Saudi Kayan (one of Sabic affiliates). Below details describes the project outcomes: SK overall maintenance wrench time was measured at 20% (on average) from the total daily working time. The assessment indicates the appearance of several organizational gaps, such as a high amount of reactive work, poor coordination and teamwork, Unclear roles and responsibilities, as well as underutilization of resources. Multidiscipline team was assigned to design and implement an appropriate work process that is capable to govern the execution process, improve the maintenance workforce efficiency, and maximize wrench time (targeting > 50%). The enhanced work process was introduced through brainstorming and wide benchmarking, incorporated with a proper change management plan and leadership sponsorship. The project was completed in 2018. Achieved Results: SK WT was improved to 50%, which resulted in 1) reducing the Average Notification completion time. 2) reducing maintenance expenses on OT and manpower support (3.6 MSAR Actual Saving from Budget within 6 months).

Keywords: efficiency, enhancement, maintenance, work force, wrench time

Procedia PDF Downloads 124
10037 Effects of Corruption and Logistics Performance Inefficiencies on Container Throughput: The Latin America Case

Authors: Fernando Seabra, Giulia P. Flores, Karolina C. Gomes

Abstract:

Trade liberalizations measures, as import tariff cuts, are not a sufficient trigger for trade growth. Given that price margins are narrow, traders and cargo operators tend to opt out of markets where the process of goods clearance is slow and costly. Excess paperwork and slow customs dispatch not only lead to institutional breakdowns and corruption but also to increasing transaction cost and trade constraints. The objective of this paper is, therefore, two-fold: First, to evaluate the relationship between institutional and infrastructural performance indexes and trade growth in container throughput; and, second, to investigate the causes for differences in container demurrage and detention fees in Latin American countries (using other emerging countries as benchmarking). The analysis is focused on manufactured goods, typically transported by containers. Institutional and infrastructure bottlenecks and, therefore, the country logistics efficiency – measured by the Logistics Performance Index (LPI, World Bank-WB) – are compared with other indexes, such as the Doing Business index (WB) and the Corruption Perception Index (Transparency International). The main results based on the comparison between Latin American countries and the others emerging countries point out in that the growth in containers trade is directly related to LPI performance. It has also been found that the main hypothesis is valid as aspects that more specifically identify trade facilitation and corruption are significant drivers of logistics performance. The exam of port efficiency (demurrage and detention fees) has demonstrated that not necessarily higher level of efficiency is related to lower charges; however, reductions in fees have been more significant within non-Latin American emerging countries.

Keywords: corruption, logistics performance index, container throughput, Latin America

Procedia PDF Downloads 234
10036 A Practice Model for Quality Improvement in Concrete Block Mini Plants Based on Merapi Volcanic Sand

Authors: Setya Winarno

Abstract:

Due to abundant Merapi volcanic sand in Yogyakarta City, many local people have utilized it for mass production of concrete blocks through mini plants although their products are low in quality. This paper presents a practice model for quality improvement in this situation in order to supply the current customer interest in good quality of construction material. The method of this research was to investigate a techno economic evaluation through laboratory test and interview. Samples of twenty existing concrete blocks made by local people had only 19.4 kg/cm2 in average compression strength which was lower than the minimum Indonesian standard of 25 kg/cm2. Through repeat testing in laboratory for fulfilling the standard, the concrete mix design of water cement ratio should not be more than 0.64 by weight basis. The proportion of sand as aggregate content should not be more than 9 parts to 1 part by volume of Portland cement. Considering the production cost, the basic price was Rp 1,820 for each concrete block, comparing to Rp 2,000 as a normal competitive market price. At last, the model describes (a) maximum water cement ratio is 0.64, (b) maximum proportion of sand and cement is 1:9, (c) the basic price is about Rp. 1,820.00 and (d) strategies to win the competitive market on mass production of concrete blocks are focus in quality, building relationships with consumer, rapid respond to customer need, continuous innovation by product diversification, promotion in social media, and strict financial management.

Keywords: concrete block, good quality, improvement model, diversification

Procedia PDF Downloads 505
10035 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process

Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes

Abstract:

Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.

Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting

Procedia PDF Downloads 148
10034 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation

Authors: Mahdi Asghari

Abstract:

The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.

Keywords: Cavitation, Hydrodynamic Cavitation, Cavitation Reactor, Fuel Oil

Procedia PDF Downloads 105
10033 Application of Dissolved Air Flotation for Removal of Oil from Wastewater

Authors: Talat Ghomashchi, Zahra Akbari, Shirin Malekpour, Marjan Alimirzaee

Abstract:

Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively.

Keywords: dissolved air flotation, oil industry, waste water, treatment

Procedia PDF Downloads 512
10032 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 174
10031 Advanced Digital Manufacturing: Case Study

Authors: Abdelrahman Abdelazim

Abstract:

Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.

Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing

Procedia PDF Downloads 761
10030 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 74
10029 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 110
10028 Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4

Authors: Li Liang

Abstract:

Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production.

Keywords: thermodynamics, acid-soluble titanium slag, preparation of TiCl4, chlorination

Procedia PDF Downloads 573
10027 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture

Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran

Abstract:

The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.

Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development

Procedia PDF Downloads 144
10026 Production of Polyurethane Foams from Bark Wastes

Authors: Luísa P. Cruz-Lopes, Liliana Rodrigues, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

Currently, the polyurethanes industry is dependent on fossil resources to obtain their basic raw materials (polyols and isocyanate), as these are obtained from petroleum products. The aim of this work was to use biopolyols from liquefied Pseudotsuga (Pseudotsuga menziesii) and Turkey oak (Quercus cerris) barks for the production of polyurethane foams and optimize the process. Liquefaction was done with glycerol catalyzed by KOH. Foams were produced following different formulations and using biopolyols from both barks. Subsequently, the foams were characterized according to their mechanical properties and the reaction of the foam formation was monitored by FTIR-ATR. The results show that it is possible to produce polyurethane foams using bio-based polyols and the liquefaction conditions are very important because they influence the characteristics of biopolyols and, consequently the characteristics of the foams. However, the process has to be further optimized so that it can obtain better quality foams.

Keywords: Bio-based polyol, mechanical tests, polyurethane foam, Pseudotsuga bark, renewable resources, Turkey oak bark

Procedia PDF Downloads 331
10025 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 366
10024 The Impact of Motor Predispositions of Pilot-Cadets on Results in Aviation Synthetic Efficiency Test

Authors: Zbigniew Wochynski, Justyna Skrzynska, Robert Jedrys, Zdzislaw Kobos

Abstract:

The aim of the study is to determine the types of motor skills and their impact on achieving results while undergoing Aviation Synthetic Efficiency Test (ASET). The study involved 59 cadets, 21 years-old on average, who are studying on first year for a pilot. The average weight of the respondents is 73.8 kg. The subjects were divided into two groups by weight: up to 73.8 kg -group A (n-30) and above 73,8kg -group B (n-29). All subjects underwent the following tests: running at 40m, 100m, 1000m, 2000m, pull-ups, ASET. In both groups, the cadets were divided into two motor skills types taking into advance 40 m running, pull-ups, 2000 meters running and then subjected to do ASET. There has been shown statistically significant increase in group B in body height, weight and BMI with p <0.0003, p <0.0001, p <0.0001 compared to group A. The results indicate that the dominant motor type in all subjects is the endurance-strength model, which reached the speed V = 1,42m/s in overcoming ASET. This is confirmed by the correlation between 2000m and pull-ups r = 0.37 (p <0.05). In group A, the results indicate that the dominant type of motor is a high-speed-endurance model (26.6%), which reached speed V = 1,42m/s in overcoming ASET. In Group B, there was type of motor speed-strength (20.6%), which reached speed of V = 1.45m/s in overcoming ASET. This confirms the correlation between ASET and pull-ups r = 0.56 (p <0.005). Examined cadets who were having one dominant characteristic achieved worse results is ASET. The best results from all examined cadets in overcoming ASET had the type of motor endurance-strength, in group A endurance-speed model and in group B type of speed-strength

Keywords: ASET, Aviation Synthetic Efficiency Test, motor skills, physical tests, pilot-cadets

Procedia PDF Downloads 274
10023 The Maps of Meaning (MoM) Consciousness Theory

Authors: Scott Andersen

Abstract:

Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.

Keywords: consciousness, perception, prospection, embodiment

Procedia PDF Downloads 26
10022 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 209
10021 An Experimental Study of Online Peer-to-Peer Language Learning

Authors: Abrar Al-Hasan

Abstract:

Web 2.0 has significantly increased the amount of information available to users not only about firms and their offerings, but also about the activities of other individuals in their networks and markets. It is widely acknowledged that this increased availability of ‘social’ information, particularly about other individuals, is likely to influence a user’s behavior and choices. However, there are very few systematic studies of how such increased information transparency on the behavior of other users in a focal users’ network influences a focal users’ behavior in the emerging marketplace of online language learning. This study seeks to examine the value and impact of ‘social activities’ – wherein, a user sees and interacts with the learning activities of her peers – on her language learning efficiency. An online experiment in a peer-to-peer language marketplace was conducted to compare the learning efficiency of users with ‘social’ information versus users with no ‘social’ information. The results of this study highlight the impact and importance of ‘social’ information within the language learning context. The study concludes by exploring how these insights may inspire new developments in online education.

Keywords: e-Learning, language learning marketplace, peer-to-peer, social network

Procedia PDF Downloads 370
10020 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 216
10019 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 266
10018 Mixed Model Sequencing in Painting Production Line

Authors: Unchalee Inkampa, Tuanjai Somboonwiwat

Abstract:

Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.

Keywords: sequencing, mixed model lines, painting process, electrode position paint

Procedia PDF Downloads 404
10017 Advances in Sesame Molecular Breeding: A Comprehensive Review

Authors: Micheale Yifter Weldemichael

Abstract:

Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.

Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering

Procedia PDF Downloads 15
10016 Investigation of Unconventional Fuels in Co-Axial Engines

Authors: Arya Pirooz

Abstract:

The effects of different fuels (DME, RME B100, and SME B100) on barrel engines were studied as a general, single dimensional investigation for characterization of these types of engines. A base computational model was created as reference point to be used as a point of comparison with different cases. The models were computed using the commercial computational fluid dynamics program, Diesel-RK. The base model was created using basic dimensions of the PAMAR-3 engine with inline unit injectors. Four fuel cases were considered. Optimized models were also considered for diesel and DME cases with respect to injection duration, fuel, injection timing, exhaust and intake port opening, CR, angular offset. These factors were optimized for highest BMEP, combined PM and NOx emissions, and highest SFC. Results included mechanical efficiency (eta_m), efficiency and power, emission characteristics, combustion characteristics. DME proved to have the highest performing characteristics in relation to diesel and RME fuels for this type of barrel engine.

Keywords: DME, RME, Diesel-RK, characterization, inline unit injector

Procedia PDF Downloads 459
10015 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine

Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.

Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence

Procedia PDF Downloads 196
10014 Using Social Network Analysis for Cyber Threat Intelligence

Authors: Vasileios Anastopoulos

Abstract:

Cyber threat intelligence assists organizations in understanding the threats they face and helps them make educated decisions on preparing their defenses. Sharing of threat intelligence and threat information is increasingly leveraged by organizations and enterprises, and various software solutions are already available, with the open-source malware information sharing platform (MISP) being a popular one. In this work, a methodology for the production of cyber threat intelligence using the threat information stored in MISP is proposed. The methodology leverages the discipline of social network analysis and the diamond model, a model used for intrusion analysis, to produce cyber threat intelligence. The workings are demonstrated with a case study on a production MISP instance of a real organization. The paper concluded with a discussion on the proposed methodology and possible directions for further research.

Keywords: cyber threat intelligence, diamond model, malware information sharing platform, social network analysis

Procedia PDF Downloads 147
10013 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 420
10012 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant

Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar

Abstract:

This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.

Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration

Procedia PDF Downloads 66