Search results for: international teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11759

Search results for: international teaching and learning

9089 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries

Authors: Ram A. Giri, Amna Bedri, Abdou Niane

Abstract:

Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.

Keywords: exclusion, inclusion, inclusive education, marginalization

Procedia PDF Downloads 229
9088 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 106
9087 Learners' Perception of Digitalization of Medical Education in a Low Middle-Income Country – A Case Study of the Lecturio Platform

Authors: Naomi Nathan

Abstract:

Introduction Digitalization of medical education can revolutionize how medical students learn and interact with the medical curriculum across contexts. With the increasing availability of the internet and mobile connectivity in LMICs, online medical education platforms and digital learning tools are becoming more widely available, providing new opportunities for learners to access high-quality medical education and training. However, the adoption and integration of digital technologies in medical education in LMICs is a complex process influenced by various factors, including learners' perceptions and attitudes toward digital learning. In Ethiopia, the adoption of digital platforms for medical education has been slow, with traditional face-to-face teaching methods still being the norm. However, as access to technology improves and more universities adopt digital platforms, it is crucial to understand how medical students perceive this shift. Methodology This study investigated medical students' perception of the digitalization of medical education in relation to their access to the Lecturio Digital Medical Education Platform through a capacity-building project. 740 medical students from over 20 medical universities participated in the study. The students were surveyed using a questionnaire that included their attitudes toward the digitalization of medical education, their frequency of use of the digital platform, and their perceived benefits and challenges. Results The study results showed that most medical students had a positive attitude toward digitalizing medical education. The most commonly cited benefit was the convenience and flexibility of accessing course material/curriculum online. Many students also reported that they found the platform more interactive and engaging, leading to a more meaningful learning experience. The study also identified several challenges medical students faced when using the platform. The most commonly reported challenge was the need for more reliable internet access, which made it difficult for students to access content consistently. Overall, the results of this study suggest that medical students in Ethiopia have a positive perception of the digitalization of medical education. Over 97% of students continuously expressed a need for access to the Lecturio platform throughout their studies. Conclusion Significant challenges still need to be addressed to fully realize the Lecturio digital platform's benefits. Universities, relevant ministries, and various stakeholders must work together to address these challenges to ensure that medical students fully participate in and benefit from digitalized medical education - sustainably and effectively.

Keywords: digital medical education, EdTech, LMICs, e-learning

Procedia PDF Downloads 90
9086 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes

Authors: Richard Harrison

Abstract:

Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HE

Keywords: competency, development, intervention, scaffolding

Procedia PDF Downloads 64
9085 The Status of English Learning in the Israeli Academy

Authors: Ronit German, Alexandra Beytenbrat

Abstract:

Although English seems to be prevalent in every sphere of Israeli daily life, not many Israeli students have a sufficient level of writing and speaking in English which is necessary for academic studies. The inadequate level of English among Israeli students is because the sole focus is on teaching reading comprehension, and the need to adapt to the trends of the professional worldwide demands triggered a reform that requires implementing Common European Framework of Reference (CEFR) and English as a Medium of Instruction (EMI) courses in the Israeli academic institutions. However, it will be argued that this reform is challenging to implement. The fact that modern Hebrew is a revived language, and that English is L3 for more than 30% of the population, the diverse social and cultural students’ background, and psychological factors stand in the way of the new reform.

Keywords: CEFR, cultural diversity, EMI courses, English in Israel, reform

Procedia PDF Downloads 216
9084 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 311
9083 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 140
9082 Exploring the Process of Cultivating Tolerance: The Case of a Pakistani University

Authors: Uzma Rashid, Mommnah Asad

Abstract:

As more and more people fall victim to the intolerance that has become a plague globally, academicians are faced with the herculean task of sowing the roots for more tolerant individuals. Being the multilayered task that it is, promoting an acceptance of diversity and pushing an agenda to push back hate requires efforts on multiple levels. Not only does the curriculum need to be in line with such goals, but teachers also need to be trained to cater to the sensitivities surrounding conversations of tolerance and diversity. In addition, institutional support needs to be there to provide conducive conditions for a diversity driven learning process to take place. In reality, teachers have to struggle with forwarding ideas about diversity and tolerance which do not sound particularly risky to be shared but given the current socio-political and religious milieu, can put the teacher in a difficult position and can make the task exponentially challenging. This paper is based on an auto-ethnographic account of teaching undergraduate and graduate courses at a private university in Pakistan. These courses were aimed at teaching tolerance to adult learners through classes focused on key notions pertaining to religion, culture, gender, and society. Authors’ classroom experiences with the students in these courses indicate a marked heightening of religious sensitivities that can potentially threaten a teacher’s life chances and become a hindrance in deep, meaningful conversations, thus lending a superficiality to the whole endeavor. The paper will discuss in detail the challenges that this teacher dealt with in the process, how those were addressed, and locate them in the larger picture of how tolerance can be materialized in current times in the universities in Pakistan and in similar contexts elsewhere.

Keywords: tolerance, diversity, gender, Pakistani Universities

Procedia PDF Downloads 155
9081 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 47
9080 The Interplay of Communication and Critical Thinking in the Mathematics Classroom

Authors: Sharon K. O'Kelley

Abstract:

At the heart of mathematics education is the concept of communication which many teachers envision as the influential dialogue they conduct with their students. However, communication in the mathematics classroom operates in different forms at different levels, both externally and internally. Specifically, it can be a central component in the building of critical thinking skills that requires students not only to know how to communicate their solutions to others but that they also be able to navigate their own thought processes in search of those solutions. This paper provides a review of research on the role of communication in the building of critical thinking skills in mathematics with a focus on the problem-solving process and the implications this interplay has for the teaching and learning of mathematics.

Keywords: communication in mathematics, critical thinking skills, mathematics education, problem-solving process

Procedia PDF Downloads 85
9079 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 124
9078 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning

Authors: Huixuan Xu

Abstract:

The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.

Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning

Procedia PDF Downloads 255
9077 A Multiple Case Study of How Bilingual-Bicultural Teachers' Language Shame and Loss Affects Teaching English Language Learners

Authors: Lisa Winstead, Penny Congcong Wang

Abstract:

This two-year multiple case study of eight Spanish-English speaking teachers explores bilingual-bicultural Latino teachers’ lived experiences as English Language Learners and, more recently, as adult teachers who work with English Language Learners in mainstream schools. Research questions explored include: How do bilingual-bicultural teachers perceive their native language use and sense of self within society from childhood to adulthood? Correspondingly, what are bilingual teachers’ perceptions of how their own language learning experience might affect teaching students of similar linguistic and cultural backgrounds? This study took place in an urban area in the Pacific Southwest of the United States. Participants were K-8 teachers and enrolled in a Spanish-English bilingual authorization program. Data were collected from journals, focus group interviews, field notes, and class artifacts. Within case and cross-case analysis revealed that the participants were shamed about their language use as children which contributed to their primary language loss. They similarly reported how experiences of mainstream educator and administrator language shaming invalidated their ability to provide support for Latino heritage ELLs, despite their bilingual-bicultural expertise. However, participants reported that counter-narratives from the bilingual authorization program, parents, community and church organizations, and cultural responsive teachers were effective in promoting their language retention, pride, and feelings of well-being.

Keywords: teacher education, bilingual education, English language learners, emergent bilinguals, social justice, language shame, language loss, translanguaging

Procedia PDF Downloads 187
9076 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 433
9075 The Evolution of Domestic Terrorism: Global Contemporary Models

Authors: Bret Brooks

Abstract:

As the international community has focused their attention in recent times on international and transnational terrorism, many nations have ignored their own domestic terrorist groups. Domestic terrorism has significantly evolved over the last 15 years and as such nation states must adequately understand their own individual issues as well as the broader worldwide perspective. Contemporary models show that obtaining peace with domestic groups is not only the end goal, but also very obtainable. By evaluating modern examples and incorporating successful strategies, countries around the world have the ability to bring about a diplomatic resolution to domestic extremism and domestic terrorism.

Keywords: domestic, evolution, peace, terrorism

Procedia PDF Downloads 518
9074 Education for Social Justice: University Teachers’ Conceptions and Practice: A Comparative Study

Authors: Digby Warren, Jiri Kropac

Abstract:

While aspirations of social justice are often articulated by universities as a “feel good” mantra, what is meant by education for social justice deserves deeper consideration. Based on in-depth interviews with academics (voluntary participants in this research) in different disciplines and institutions in the UK, Czech Republic, and other EU countries, this comparative study presents thematic findings regarding lecturers’ conceptions of education for social justice -what it is, why it is important, why they are personally committed to it, how it connects with their own values- and their practice of it- how it is implemented through curriculum content, teaching and learning activities, and assessment tasks. It concludes by presenting an analysis of the challenges, constraints, and enabling factors in practising social justice education in different subject, institutional and national contexts.

Keywords: higher education, social justice, inclusivity, diversity

Procedia PDF Downloads 124
9073 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 208
9072 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model

Authors: C. M. Mat Isa, H. Mohd Saman, S. R. Mohd Nasir, A. Jaapar

Abstract:

International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.

Keywords: factors, early movers, entry timing choices, late movers, logistic regression model, principal axis factorial analysis, Malaysian construction firms

Procedia PDF Downloads 374
9071 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 549
9070 Challenges to Collaborative Learning in Architectural Education in the Middle East

Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan

Abstract:

Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.

Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience

Procedia PDF Downloads 328
9069 Use of Cloud-Based Virtual Classroom in Connectivism Learning Process to Enhance Information Literacy and Self-Efficacy for Undergraduate Students

Authors: Kulachai Kultawanich, Prakob Koraneekij, Jaitip Na-Songkhla

Abstract:

The way of learning has been changed into a new paradigm since the improvement of network and communication technology, so learners have to interact with massive amount of the information. Thus, information literacy has become a critical set of abilities required by every college and university in the world. Connectivism is considered to be an alternative way to design information literacy course in online learning environment, such as Virtual Classroom (VC). With the change of learning pedagogy, VC is employed to improve the social capability by integrating cloud-based technology. This paper aims to study the use of Cloud-based Virtual Classroom (CBVC) in Connectivism learning process to enhance information literacy and self-efficacy of twenty-one undergraduate students who registered in an e-publishing course at Chulalongkorn University. The data were gathered during 6 weeks of the study by using the following instruments: (1) Information literacy test (2) Information literacy rubrics (3) Information Literacy Self-Efficacy (ILSE) Scales and (4) Questionnaire. The result indicated that students have information literacy and self-efficacy posttest mean scores higher than pretest mean scores at .05 level of significant after using CBVC in Connectivism learning process. Additionally, the study identified that the Connectivism learning process proved useful for developing information rich environment and a sense of community, and the CBVC proved useful for developing social connection.

Keywords: cloud-based, virtual classroom, connectivism, information literacy

Procedia PDF Downloads 452
9068 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria

Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike

Abstract:

The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.

Keywords: influence, land, trend, value

Procedia PDF Downloads 362
9067 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 162
9066 The Use of the Mediated Learning Experience in Response of Special Needs Education

Authors: Maria Luisa Boninelli

Abstract:

This study wants to explore the effects of a mediated intervention program in a primary school. The participants where 120 students aged 8-9, half of them Italian and half immigrants of first or second generation. The activities consisted on the cognitive enhancement of the participants through Feuerstein’s Instrumental Enrichment, (IE) and on an activity centred on body awareness and mediated learning experience. Given that there are limited studied on learners in remedial schools, the current study intented to hypothesized that participants exposed to mediation would yiel a significant improvement in cognitive functioning. Hypothesis One proposed that, following the intervention, improved Q1vata scores of the participants would occur in each of the groups. Hypothesis two postulated that participants within the Mediated Learning Experience would perform significantly better than those group of control. For the intervention a group of 60 participants constituted a group of Mediation sample and were exposed to Mediated Learning Experience through Enrichment Programm. Similiary the other 60 were control group. Both the groups have students with special needs and were exposed to the same learning goals. A pre-experimental research design, in particular a one-group pretest-posttest approach was adopted. All the participants in this study underwent pretest and post test phases whereby they completed measures according to the standard instructions. During the pretest phase, all the participants were simultaneously exposed to Q1vata test for logical and linguistic evaluation skill. During the mediation intervention, significant improvement was demonstrated with the group of mediation. This supports Feuerstein's Theory that initial poor performance was a result of a lack of mediated learning experience rather than inherent difference or deficiencies. Furthermore the use of an appropriate mediated learning enabled the participants to function adequately.

Keywords: cognitive structural modifiability, learning to learn, mediated learning experience, Reuven Feuerstein, special needs

Procedia PDF Downloads 378
9065 Examining Individual and Organisational Legal Accountability for Sexual Exploitation Perpetrated by International Humanitarian Workers in Haiti

Authors: Elizabeth Carthy

Abstract:

There is growing recognition that sexual exploitation and abuse (SEA) perpetrated by humanitarian workers is widespread, most recently affirmed by allegations of high-ranking Oxfam officials paying women for sex in post-earthquake Haiti. SEA covers a range of gendered abuses, including rape, sexual assault, and ‘transactional’ or ‘survival’ sex. Holding individuals legally accountable for such behaviors is difficult in all contexts even more so in fragile and conflict-affected settings. Transactional sex, for the purposes of this paper, refers to situations where humanitarian workers exchange aid or assistance for sexual services. This paper explores existing organizational accountability measures relating to transactional sex engaged in by international humanitarian workers through a descriptive and interpretive case study approach-examining the situation in Haiti. It comparatively analyses steps the United Nations has taken to combat this problem. Then it examines the possibility of domestic legal accountability for such conduct in Haiti. Finally, the paper argues that international human rights law can fill in potential gaps in domestic legal frameworks to ensure states hold humanitarian workers and potentially organizations accountable for engaging in and/or perpetuating this gendered abuse of power.

Keywords: gender-based violence, humanitarian action, international human rights law, sexual exploitation

Procedia PDF Downloads 163
9064 Effect of Reflective Practices on the Performance of Prospective Teachers

Authors: Madiha Zahid, Afifa Khanam

Abstract:

The present study aims to investigate the effect of reflective teaching practices on prospective teachers’ performance. Reflective teaching practice helps teachers to plan, implement and improve their performance by rethinking about their strengths and weaknesses. An action research was conducted by the researcher. All prospective teachers of sixth semester in a women university’s teacher education program were the population of the study. From 40 students, 20 students were taken as experimental group, and the rest of 20 students were taken as control group. During the action research a cyclic process of producing a module, training teachers for the reflective practices and then observing them during their class for reflective practice was done by the researchers. The research used a set of rubrics and checklists for assessing prospective teachers’ performance during their class. Finally, the module was modified with the help of findings. It was found that the training has improved the performance of teachers as they revised and modified their teaching strategies through reflective practice. However, they were not able to train their students for reflective practice as per expectation. The study has implications for teacher training programs to include reflective practice modules as part of their course work for making them better teachers.

Keywords: reflective practices, prospective teacher, effect, performance

Procedia PDF Downloads 173
9063 Exploring Moroccan Teachers Beliefs About Multilingualism

Authors: Belkhadir Radouane

Abstract:

In this study, author tried to explore the beliefs of some Moroccan teachers working in the delegations of Safi and Youcefia about the usefulness of first and second languages in learning the third language. More specifically, author attempted to see the extent to which these teachers believe that a first and second language can serve students in learning a third one. The first language in this context is Arabic, the second is French, and the third is English. The teachers’ beliefs were gathered through a questionnaire that was addressed via Google Forms. Then, the results were analyzed using the same application. It was found that teachers are positive about the usefulness of the first and second language in learning the third one, but most of them rarely use in a conscious way activities that serve this purpose.

Keywords: Bilinguilism, teachers beliefs, English as ESL, Morocco

Procedia PDF Downloads 53
9062 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 140
9061 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 196
9060 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 387