Search results for: hydrogeological potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11506

Search results for: hydrogeological potential

8836 Cardiotoxicity Associated with Radiation Therapy: The Role of Bone Marrow Mesenchymal Cells in Improvement of Heart Function

Authors: Isalira Peroba Ramos, Cherley Borba Vieira de Andrade, Grazielle Suhett, Camila Salata, Paulo Cesar Canary, Guilherme Visconde Brasil, Antonio Carlos Campos de Carvalho, Regina Coeli dos Santos Goldenberg

Abstract:

Background: The therapeutic options for patients with cancer now include increasingly complex combinations of medications, radiation therapy (RT), and surgical intervention. Many of these treatments have important potential adverse cardiac effects and are likely to have significant effects on patient outcomes. Cell therapy appears to be promising for the treatment of chronic and degenerative diseases, including cardiomyopathy induced by RT, as the current therapeutic options are insufficient. Aims: To evaluate the potential of bone marrow mesenchymal cells (BMMCs) in radioinduced cardiac damage Methods: Female Wistar rats, 3 months old (Ethics Committee 054/14), were divided into 2 groups, non-treated irradiated group (IR n=15) and irradiated and BMMC treated (IRT n=10). Echocardiography was performed to evaluate heart function. After euthanasia, 3 months post treatment; the left ventricle was removed and prepared for RT-qPCR (VEGF and Pro Collagen I) and histological (picrosirius) analysis. Results: In both groups, 45 days after irradiation, ejection fraction (EF) was in the normal range for these animals (> 70%). However, the BMMC treated group had EF (83.1%±2.6) while the non-treated IR group showed a significant reduction (76.1%±2.6) in relation to the treated group. In addition, we observed an increase in VEGF gene expression and a decrease in Pro Collagen I in IRT when compared to IR group. We also observed by histology that the collagen deposition was reduced in IRT (10.26%±0.83) when compared to IR group (25.29%±0.96). Conclusions: Treatment with BMMCs was able to prevent ejection fraction reduction and collagen deposition in irradiated animals. The increase of VEGF and the decrease of pro collagen I gene expression might explain, at least in part, the cell therapy benefits. All authors disclose no financial or personal relationships with individuals or organizations that could be perceived to bias their work. Sources of funding: FAPERJ, CAPES, CNPq, MCT.

Keywords: mesenchymal cells, radioation, cardiotoxicity, bone marrow

Procedia PDF Downloads 256
8835 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: seiun maru propeller, steady, unstead, CFD, HSP

Procedia PDF Downloads 305
8834 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 233
8833 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 488
8832 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy

Authors: Ozgul Kartal, Wade Tillett, Lyn D. English

Abstract:

Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.

Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education

Procedia PDF Downloads 65
8831 Stereoscopic Motion Design: Design Futures

Authors: Edgar Teixeira, Eurico Carrapatoso

Abstract:

As 3D displays become increasingly affordable, while production techniques and computational resources to create stereoscopic content being ever more accessible, a new dimension is literally introduced along with new expressive and immersive potentialities in support of designing for the screen. Prospective design visionaries have already at the reach of their hands an innovative and powerful visualization technology, which enables them to actively envision future trends and vanguardist directions. This paper explores the aesthetic and informational potentialities of stereoscopic motion graphics, providing insight on the application of 3D displays in design practice, proposing strategies to investigate stereoscopic communication, discussing potential repercussions to extant theory and impacts on audience.

Keywords: design, visual communication, technology, stereoscopy, 3D media

Procedia PDF Downloads 407
8830 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels

Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad

Abstract:

Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.

Keywords: amnion, hemocompatibility, tissue engineering, biomaterial

Procedia PDF Downloads 395
8829 Summary of Technical Approaches to Improve Energy Efficiency in Electric Motor Drive Systems

Authors: Manuel Valencia Alejaandro Paz, Luz Nidia Quintero Jairo Palacios

Abstract:

In present paper a set of technical approaches to improve the energy efficiency in processes controlled by electric motor drive systems EMDS are listed and analyzed. Energy saving becomes fundamental to improve the sustainability and competitiveness of organizations all around the world; increasing costs of electricity had impulse the use of different strategies to reduce the electric power condition. A summary of these techniques is presented and evaluated in the potential for energy saving policies.

Keywords: energy saving, EMDS, induction motor, energy efficiency, sustainability

Procedia PDF Downloads 373
8828 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 270
8827 Leadership and Corporate Social Responsibility: The Role of Spiritual Intelligence

Authors: Meghan E. Murray, Carri R. Tolmie

Abstract:

This study aims to identify potential factors and widely applicable best practices that can contribute to improving corporate social responsibility (CSR) and corporate performance for firms by exploring the relationship between transformational leadership, spiritual intelligence, and emotional intelligence. Corporate social responsibility is when companies are cognizant of the impact of their actions on the economy, their communities, the environment, and the world as a whole while executing business practices accordingly. The prevalence of CSR has continuously strengthened over the past few years and is now a common practice in the business world, with such efforts coinciding with what stakeholders and the public now expect from corporations. Because of this, it is extremely important to be able to pinpoint factors and best practices that can improve CSR within corporations. One potential factor that may lead to improved CSR is spiritual intelligence (SQ), or the ability to recognize and live with a purpose larger than oneself. Spiritual intelligence is a measurable skill, just like emotional intelligence (EQ), and can be improved through purposeful and targeted coaching. This research project consists of two studies. Study 1 is a case study comparison of a benefit corporation and a non-benefit corporation. This study will examine the role of SQ and EQ as moderators in the relationship between the transformational leadership of employees within each company and the perception of each firm’s CSR and corporate performance. Project methodology includes creating and administering a survey comprised of multiple pre-established scales on transformational leadership, spiritual intelligence, emotional intelligence, CSR, and corporate performance. Multiple regression analysis will be used to extract significant findings from the collected data. Study 2 will dive deeper into spiritual intelligence itself by analyzing pre-existing data and identifying key relationships that may provide value to companies and their stakeholders. This will be done by performing multiple regression analysis on anonymized data provided by Deep Change, a company that has created an advanced, proprietary system to measure spiritual intelligence. Based on the results of both studies, this research aims to uncover best practices, including the unique contribution of spiritual intelligence, that can be utilized by organizations to help enhance their corporate social responsibility. If it is found that high spiritual and emotional intelligence can positively impact CSR effort, then corporations will have a tangible way to enhance their CSR: providing targeted employees with training and coaching to increase their SQ and EQ.

Keywords: corporate social responsibility, CSR, corporate performance, emotional intelligence, EQ, spiritual intelligence, SQ, transformational leadership

Procedia PDF Downloads 127
8826 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 64
8825 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles

Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng

Abstract:

Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.

Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies

Procedia PDF Downloads 64
8824 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 74
8823 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey

Authors: Bilge Ozel

Abstract:

Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.

Keywords: resilience, urban dynamics, urban resilience, urban transformation

Procedia PDF Downloads 264
8822 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 148
8821 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

Authors: Zeynep Sener, Mehtap Dursun

Abstract:

Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.

Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection

Procedia PDF Downloads 451
8820 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure

Authors: Tokuei Sako

Abstract:

Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.

Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity

Procedia PDF Downloads 509
8819 Exploring Barriers to Social Innovation: Swedish Experiences from Nine Research Circles

Authors: Claes Gunnarsson, Karin Fröding, Nina Hasche

Abstract:

Innovation is a necessity for the evolution of societies and it is also a driving force in human life that leverages value creation among cross-sector participants in various network arrangements. Social innovations can be characterized as the creation and implementation of a new solution to a social problem, which is more effective and sustainable than existing solutions in terms of improvement of society’s conditions and in particular social inclusion processes. However, barriers exist which may restrict the potential of social innovations to live up to its promise as a societal welfare promoting driving force. The literature points at difficulties in tackling social problems primarily related to problem complexity, access to networks, and lack of financial muscles. Further research is warranted at detailed at detail clarification of these barriers, also connected to recognition of the interplay between institutional logics on the development of cross-sector collaborations in networks and the organizing processes to achieve innovation barrier break-through. There is also a need to further elaborate how obstacles that spur a difference between the actual and desired state of innovative value creating service systems can be overcome. The purpose of this paper is to illustrate barriers to social innovations, based on qualitative content analysis of 36 dialogue-based seminars (i.e. research circles) with nine Swedish focus groups including more than 90 individuals representing civil society organizations, private business, municipal offices, and politicians; and analyze patterns that reveal constituents of barriers to social innovations. The paper draws on central aspects of innovation barriers as discussed in the literature and analyze barriers basically related to internal/external and tangible/intangible characteristics. The findings of this study are that existing institutional structures highly influence the transformative potential of social innovations, as well as networking conditions in terms of building a competence-propelled strategy, which serves as an offspring for overcoming barriers of competence extension. Both theoretical and practical knowledge will contribute to how policy-makers and SI-practitioners can facilitate and support social innovation processes to be contextually adapted and implemented across areas and sectors.

Keywords: barriers, research circles, social innovation, service systems

Procedia PDF Downloads 257
8818 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring

Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove

Abstract:

Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.

Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor

Procedia PDF Downloads 75
8817 Feasibility of Implementing Digital Healthcare Technologies to Prevent Disease: A Mixed-Methods Evaluation of a Digital Intervention Piloted in the National Health Service

Authors: Rosie Cooper, Tracey Chantler, Ellen Pringle, Sadie Bell, Emily Edmundson, Heidi Nielsen, Sheila Roberts, Michael Edelstein, Sandra Mounier Jack

Abstract:

Introduction: In line with the National Health Service’s (NHS) long-term plan, the NHS is looking to implement more digital health interventions. This study explores a case study in this area: a digital intervention used by NHS Trusts in London to consent adolescents for Human Papilloma Virus (HPV) immunisation. Methods: The electronic consent intervention was implemented in 14 secondary schools in inner city, London. These schools were statistically matched with 14 schools from the same area that were consenting using paper forms. Schools were matched on deprivation and English as an additional language. Consent form return rates and HPV vaccine uptake were compared quantitatively between intervention and matched schools. Data from observations of immunisation sessions and school feedback forms were analysed thematically. Individual and group interviews were undertaken with implementers parents and adolescents and a focus group with adolescents were undertaken and analysed thematically. Results: Twenty-eight schools (14 e-consent schools and 14 paper consent schools) comprising 3219 girls (1733 in paper consent schools and 1486 in e-consent schools) were included in the study. The proportion of pupils eligible for free school meals, with English as an additional language and students' ethnicity profile, was similar between the e-consent and paper consent schools. Return of consent forms was not increased by the implementation of the e-consent intervention. There was no difference in the proportion of pupils that were vaccinated at the scheduled vaccination session between the paper (n=14) and e-consent (n=14) schools (80.6% vs. 81.3%, p=0.93). The transition to using the system was not straightforward, whilst schools and staff understood the potential benefits, they found it difficult to adapt to new ways of working which removed some level or control from schools. Part of the reason for lower consent form return in e-consent schools was that some parents found the intervention difficult to use due to limited access to the internet, finding it hard to open the weblink, language barriers, and in some cases, the system closed a few days prior to sessions. Adolescents also highlighted the potential for e-consent interventions to by-pass their information needs. Discussion: We would advise caution against dismissing the e-consent intervention because it did not achieve its goal of increasing the return of consent forms. Given the problems embedding a news service, it was encouraging that HPV vaccine uptake remained stable. Introducing change requires stakeholders to understand, buy in, and work together with others. Schools and staff understood the potential benefits of using e-consent but found the new ways of working removed some level of control from schools, which they found hard to adapt to, possibly suggesting implementing digital technology will require an embedding process. Conclusion: The future direction of the NHS will require implementation of digital technology. Obtaining electronic consent from parents could help streamline school-based adolescent immunisation programmes. Findings from this study suggest that when implementing new digital technologies, it is important to allow for a period of embedding to enable them to become incorporated in everyday practice.

Keywords: consent, digital, immunisation, prevention

Procedia PDF Downloads 146
8816 Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

Authors: Aasaithambi Kalaiselvi, Michael Gabriel Paulraj, Ekambaram Nakkeeran

Abstract:

Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest.

Keywords: Cinnamomum verum, niosomes, entrapment efficiency, bactericidal and fungicidal, mosquito larvicidal activity

Procedia PDF Downloads 164
8815 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro

Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic

Abstract:

As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.

Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis

Procedia PDF Downloads 204
8814 Experience Modularization for New Value of Evanescent Cultural Communities: Developing Creative Tourism Services in Bangkok

Authors: Wuttigrai Ngamsirijit

Abstract:

Creative tourism is an ongoing development in many countries as an attempt to moving away from serial reproduction of culture and reviving the culture. Despite, in the destinations with diverse and potential cultural resources, creating new tourism services can be vague. This paper presents how tourism experiences are modularized and consolidated in order to form new creative tourism service offerings in evanescent cultural communities of Bangkok, Thailand. The benefits from data mining in accommodating value co-creation are discussed, and implication of experience modularization to national creative tourism policy is addressed.

Keywords: co-creation, creative tourism, new service design, experience modularization

Procedia PDF Downloads 366
8813 A Benchmark for Some Elastic and Mechanical Properties of Uranium Dioxide

Authors: E. Güler, M. Güler

Abstract:

We present some elastic parameters of cubic fluorite type uranium dioxide (UO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic parameters were calculated during research. After calculations, we compared our results not only with the available theoretical data but also with previous experimental results. Our results are consistent with experiments and compare well the former theoretical results of the considered parameters of UO2.

Keywords: UO2, elastic constants, bulk modulus, mechanical properties

Procedia PDF Downloads 412
8812 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert

Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh

Abstract:

The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.

Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara

Procedia PDF Downloads 158
8811 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education

Authors: Felix Golla

Abstract:

In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.

Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies

Procedia PDF Downloads 69
8810 Effect on Haemolymph Cellular Parameters of Periplaneta Americana Following Challenge with Agrobacterium Tumefaciens: A Possible Microbial Control Agent

Authors: Fouzia Qamar, Shahida Hasnain

Abstract:

The present study is primarily concerned with the alteration in haemocyte profile of adult male Periplaneta americana with emphasis on the effect of bacterial inoculations on the haemogram i.e., total haemocyte count (THC) and differential haemocyte count (DHC) of different haemocyte types of the target insect. Haemolymph cellular profile showed considerable alterations under the effect of nine strains of Agrobacterium tumefaciens after 8, 16 and 24 hrs of treatment thereby signifying the potential role of Agrobacterium tumefaciens as a possible biocontrol agent against the house hold pests.

Keywords: Agrobacterium tumefaciens, Periplaneta americana, Haemolymph, cellular parametes

Procedia PDF Downloads 384
8809 Soy Candle vs Paraffin Candle

Authors: Otana A. Jakpor

Abstract:

Air pollution is without a doubt one of the gravest environmental threats the world is facing today in terms of its sheer toll on human lives. Each year an estimated 70,000 Americans lose their lives to air pollution -- a number equal to deaths from both breast and prostate cancer combined. Since Americans spend nearly 90% of their time indoors, more research is needed on indoor air pollution and common exposures such as candles. Paraffin wax is a by-product of petroleum, and similarities have been observed between fine particulate emissions from paraffin candles and diesel exhaust. The purpose of this study is to determine whether or not paraffin candles are a major potential source of indoor air pollution. Furthermore, this study aims to determine whether or not soy candles are a safer, cleaner alternative to paraffin candles.

Keywords: soy candle, soy, paraffin candle, paraffin

Procedia PDF Downloads 255
8808 A Comparison for Some Elastic and Mechanical Properties of Neptunium Dioxide

Authors: E. Güler, M. Güler

Abstract:

We report some elastic quantities of cubic fluorite type plutonium dioxide (PuO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic quantities were calculated during present research. After present calculations, we have compared our results with the existing theoretical data of literature. Our results are consistent with previous theoretical findings of the considered parameters of PuO2.

Keywords: PuO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 309
8807 Japanese English in Travel Brochures

Authors: Premvadee Na Nakornpanom

Abstract:

This study investigates the role and impact of English loan words on Japanese language in travel brochures. The issues arising from a potential switch to English as a tool to absorb the West’s advanced knowledge and technology in the modernization of Japan to a means of linking Japan with the rest of the world and enhancing the country’s international presence. Sociolinguistic contexts were used to analyze data collected from the Nippon Travel agency "HIS"’s brochures in Thailand, revealing that English plays the most important role as lexical gap fillers and special effect givers. An increasing mixer of English to Japanese affects how English is misused, the way the Japanese see the world and the present generation’s communication gap.

Keywords: English, Japanese, loan words, travel brochure

Procedia PDF Downloads 235