Search results for: headspace solid phase microextraction (HS-SPME)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6188

Search results for: headspace solid phase microextraction (HS-SPME)

3518 Tracing Syrian Refugees Urban Mobilities: The Case of Egypt and Canada

Authors: N. Elgendy, N. Hussein

Abstract:

The current Syrian crisis has caused unprecedented practices of global mobility. The process of forced eviction and the resettlement of refugees could be seen through the insights of the “new mobilities paradigm”. The mobility of refugees in terms of meaning and practice is a subject that calls for further studies. There is a need for the development of an approach to human mobility to understand a practice that is turning into a phenomenon in the 21st century. This paper aims at studying, from a qualitative point of view, the process of movement within the six constituents of mobility defined as the first phase of the journey of a refugee. The second phase would include the process of settling in and re-defining the host country as new “home” to refugees. The change in the refugee state of mind and crossing the physical and mental borders from a “foreigner” to a citizen is encouraged by both the governmental policies and the local communities’ efforts to embrace these newcomers. The paper would focus on these policies of social and economic integration. The concept of integration connotes the idea that refugees would enjoy the opportunities, rights and services available to the citizens of the refugee’s new community. So, this paper examines this concept through showcasing the two hosting countries of Canada and Egypt, as they provide two contrasting situations in terms of cultural, geographical, economic and political backgrounds. The analysis would highlight the specific policies defined towards the refugees including the mass communication, media calls, and access to employment. This research is part of a qualitative research project on the process of Urban Mobility practiced by the Syrian Refugees, drawing on conversational interviews with new-settlers who have moved to the different hosting countries, from their home in Syria. It explores these immigrants’ practical and emotional relationships with the process of movement and settlement. It uses the conversational interviews as a tool to document analysis and draw relationships in an attempt to establish an understanding of the factors that contribute to the new-settlers feeling of home and integration within the new community.

Keywords: integration, mobility, policy, refugees

Procedia PDF Downloads 310
3517 The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters

Authors: H. A. Taner, V. Önen

Abstract:

In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl3, Al2(SO4)3 and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl3 and Al2(SO4)3 in the travertine plant as a coagulant.

Keywords: dewatering, flocculant, fly ash, marble plant wastewater

Procedia PDF Downloads 147
3516 Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production

Authors: Vladimira Vytlacilova

Abstract:

This study presents the latest research trend in the discipline of construction and demolition (C&D) waste management in Czech Republic. The results of research interest exhibit an increasing research interest in C&D waste management practices in recent years. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills, for reclamation or landscaping all the time. The quality of recycled aggregates for use in concrete construction depends on recycling practices. Classifications, composition and contaminants influence the mechanical-physical properties as well as environmental risks related to its utilization. The second part of contribution describes properties of fibre reinforced concrete with the full replacement of natural aggregate by recycled one (concrete or masonry rubble).

Keywords: construction and demolition waste, fibre reinforced concrete, recycled aggregate, recycling, waste management

Procedia PDF Downloads 300
3515 Localized Treatment of Cutaneous Candidiasis through Cubosomes in vitro Evaluation

Authors: Aakanchha Jain, D. V. Kohli

Abstract:

Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. Cubosomes encapsulating Fluconazole were prepared by emulsification method and characterized for particle size, entrapment efficiency. The cubosomes prepared were 257.2±2.94 nm in size with drug entrapment efficiency of 66.2±2.69%. The optimized formulation characterized for shape and surface morphology by TEM and SEM analysis. SEM photograph showed the smooth surface of optimized cubosomes and TEM photograph revealed square somewhat circular intact shapes of cubosomes. MIC was determined by XTT based method and antifungal activity was determined in vitro. The cumulative percentage of Fnz from cubosomes permeated via dialysis membrane (MWCO 12-14 KD) showed a percent cumulative drug release of 76.86% while Fnz solution showed release up to 91.04% in 24 hours in PBS (pH 6.5)(p < 0.005).

Keywords: Candids albicans, cubosomes, fluconazole, topical delivery

Procedia PDF Downloads 292
3514 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification

Authors: Sam Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune

Abstract:

This paper introduces a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Importantly, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.

Keywords: cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, ZKP

Procedia PDF Downloads 67
3513 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature

Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby

Abstract:

Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2-xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law (σac = σdc+Aωn). The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.

Keywords: dielectric ceramics, dielectric constant, loss tangent, AC conductivity, impedance spectroscopy

Procedia PDF Downloads 445
3512 Application of Dual-Stage Sugar Substitution Technique in Tommy Atkins Mangoes

Authors: Rafael A. B. De Medeiros, Zilmar M. P. Barros, Carlos B. O. De Carvalho, Eunice G. Fraga Neta, Maria I. S. Maciel, Patricia M. Azoubel

Abstract:

The use of the sugar substitution technique (D3S) in mango was studied. It consisted of two stages and the use of ultrasound in one or both stages was evaluated in terms of water loss and solid gain. Higher water loss results were found subjecting the fruit samples to ultrasound in the first stage followed by immersion of the samples in Stevia-based solution with application of ultrasound in the second stage, while higher solids gain were obtained without application of ultrasound in second stage. Samples were evaluated in terms of total carotenoids content and total color difference. Samples submitted to ultrasound in both D3S stages presented higher carotenoid retention compared to samples sonicated only in the first stage. Color of man goes after the D3S process showed notable changes.

Keywords: Mangifera indica L., quality, Stevia rebaudiana, ultrasound

Procedia PDF Downloads 397
3511 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation

Authors: Eda K. Murathan, Gulten Manioglu

Abstract:

In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.

Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio

Procedia PDF Downloads 169
3510 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 339
3509 Critical Parameters of a Square-Well Fluid

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

We report extensive molecular dynamics (MD) computational investigations into the thermodynamic description of supercritical properties for a model fluid that is the simplest realistic representation of atoms or molecules. The pair potential is a hard-sphere repulsion of diameter σ with a very short attraction of length λσ. When λ = 1.005 the range is so short that the model atoms are referred to as “adhesive spheres”. Molecular dimers, trimers …etc. up to large clusters, or droplets, of many adhesive-sphere atoms are unambiguously defined. This then defines percolation transitions at the molecular level that bound the existence of gas and liquid phases at supercritical temperatures, and which define the existence of a supercritical mesophase. Both liquid and gas phases are seen to terminate at the loci of percolation transitions, and below a second characteristic temperature (Tc2) are separated by the supercritical mesophase. An analysis of the distribution of clusters in gas, meso- and liquid phases confirms the colloidal nature of this mesophase. The general phase behaviour is compared with both experimental properties of the water-steam supercritical region and also with formally exact cluster theory of Mayer and Mayer. Both are found to be consistent with the present findings that in this system the supercritical mesophase narrows in density with increasing T > Tc and terminates at a higher Tc2 at a confluence of the primary percolation loci. The expended plot of the MD data points in the mesophase of 7 critical and supercritical isotherms in highlight this narrowing in density of the linear-slope region of the mesophase as temperature is increased above the critical. This linearity in the mesophase implies the existence of a linear combination rule between gas and liquid which is an extension of the Lever rule in the subcritical region, and can be used to obtain critical parameters without resorting to experimental data in the two-phase region. Using this combination rule, the calculated critical parameters Tc = 0.2007 and Pc = 0.0278 are found be agree with the values found by of Largo and coworkers. The properties of this supercritical mesophase are shown to be consistent with an alternative description of the phenomenon of critical opalescence seen in the supercritical region of both molecular and colloidal-protein supercritical fluids.

Keywords: critical opalescence, supercritical, square-well, percolation transition, critical parameters.

Procedia PDF Downloads 513
3508 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites

Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari

Abstract:

Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm: Keywords: demolition dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 421
3507 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates

Authors: K. Subbaiah

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.

Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties

Procedia PDF Downloads 450
3506 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field

Authors: Lina Ismail Jassim, Robiah Yunus

Abstract:

To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.

Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley

Procedia PDF Downloads 300
3505 Mongolian Water Quality Problem and Health of Free-Grazing Sheep

Authors: Yu Yoshihara, Chika Tada, Moe Takada, Nyam-Osor Purevdorj, Khorolmaa Chimedtseren, Yutaka Nakai

Abstract:

Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects.

Keywords: DNA, Escherichia coli, fecal sample, lower stream, well water

Procedia PDF Downloads 465
3504 Effect of Perceived Importance of a Task in the Prospective Memory Task

Authors: Kazushige Wada, Mayuko Ueda

Abstract:

In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.

Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.

Procedia PDF Downloads 440
3503 Investigation of Parameters Affecting Copper Recovery from Brass Melting Dross

Authors: Sercan Basit, Muhlis N. Sarıdede

Abstract:

Metal amounts of copper based compounds in the various wastes have been recovered successfully by hydrometallurgical treatment methods in the literature. X-ray diffraction pattern of the brass melting slag demonstrates that it contains sufficient amount of recoverable copper. Recovery of copper from brass melting dross by sulfuric acid leaching and the effect of temperature and acid and oxidant concentration on recovery rate of copper have been investigated in this study. Experiments were performed in a temperature-controlled reactor in sulfuric acid solution in different molarities using solid liquid ratio of 100 g/L, with leaching time of 300 min. Temperature was changed between 25 °C and 80 °C and molarity was between 0.5 and 3M. The results obtained showed that temperature has important positive effect on recovery whereas it decreases with time. Also copper was recovered in larger amounts from brass dross in the presence of H2O2 as an oxidant according to the case that oxidant was not used.

Keywords: brass dross, copper recovery, hydrogen peroxide, leaching

Procedia PDF Downloads 325
3502 Comparative Chromatographic Profiling of Wild and Cultivated Macrocybe Gigantea (Massee) Pegler & Lodge

Authors: Gagan Brar, Munruchi Kaur

Abstract:

Macrocybe gigantea was collected from the wild, growing as pure white, fleshy, robust fruit bodies in caespitose clusters. Initially, the few ladies collecting these fruiting bodies for cooking revealed their edibility status, which was later confirmed through classical and molecular taxonomy. The culture of this potential wild edible taxa was raised with an aim of domesticating it. Various solid and liquid media were evaluated for their vegetative growth, in which Malt Extract Agar was found to be the best solid medium and Glucose Peptone medium as the best liquid medium. The effect of different temperatures as well as pH was also evaluated for the vegetative growth of M. gigantea, and it was found that it shows maximum vegetative growth at 30° and pH 5. For spawn preparation, various grains viz. Wheat grains, Jowar grains, Bajra grains and Maize grains were evaluated, and it was found that wheat grains boiled for 30 minutes gave the maximum mycelial growth. Mother spawn was thus prepared on wheat grains boiled for 30 minutes. For raising the fruiting bodies, different locally available agro-wastes were tried, and it was found that paddy straw gives the best growth. Both wilds as well as cultivated M. gigantea were compared through HPLC to evaluate the different nutritional and nutraceutical values. For the evaluation of different sugars in wild and cultivated M. gigantea, 15 sugars were taken for analysis. Among these Melezitose, Trehalose, Glucose, Xylose and Mannitol were found in the wild collection of M. gigantea; in the cultivated sample, Melezitose, Trehalose, Xylose and Dulcitol were detected. Among the 20 different amino acids, 18 amino acids were found, except Asparagine and Glutamine in both wild as well as cultivated samples. Among the 37 tested fatty acids, only 6 fatty acids, namely Palmitic acid, Stearic acid, Cis-9 Oleic acid, Linoleic acid, Gamma-Linolenic acid and Tricosanoic acid, were found in both wild and cultivated samples, although the concentration of these fatty acids was more in the cultivated sample. From the various vitamins tested, Vitamin C, D and E were present in both wild and cultivated samples. Both wild as well as cultivated samples were evaluated for the presence of phenols; for this purpose, eleven phenols were taken as standards in HPLC analysis, and it was found that Gallic acid, Resorcinol, Ferulic acid and Pyrogallol were present in the wild mushroom sample whereas in the cultivated sample Ferulic acid, Caffeic Acid, Vanillic acid and Vanillin are present. The flavonoid analysis revealed the presence of Rutin, Naringin and Quercetin in wild M. gigantea, while 5 Naringin, Catechol, Myrecetin, Gossypin and Quercetin were found in cultivated one. From the comparative chromatographic profiling of both wild as well as cultivated M. gigantea, it is concluded that no nutrient loss was found during its cultivation. An increase in percentage of secondary metabolites (i.e., phenols and flavonoids) was found in cultivated one as compared to wild M. gigantea. Thus, from future perspective cultivated species of M. gigantea can be recommended for the commercial purpose as a good food supplement.

Keywords: culture, edible, fruit bodies, wild

Procedia PDF Downloads 62
3501 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 310
3500 Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps

Authors: Jagtar Singh, Kulwinder Singh

Abstract:

Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated.

Keywords: deep cryogenic treatment, impeller, Irrigation pumps SS316L, slurry erosion

Procedia PDF Downloads 388
3499 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 557
3498 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances

Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: crane, dynamic model, overloading condition, vibration

Procedia PDF Downloads 566
3497 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor

Authors: S. Manjunatha, M. S. Dharmaprakash

Abstract:

Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.

Keywords: nanoparticles, XRD, TEM, photoluminescence

Procedia PDF Downloads 312
3496 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities

Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh

Abstract:

Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.

Keywords: primary health care, health system, system domains, vital signs profile

Procedia PDF Downloads 121
3495 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants

Authors: Ying-Chu Chen

Abstract:

Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.

Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE

Procedia PDF Downloads 556
3494 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers

Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker

Abstract:

The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.

Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic

Procedia PDF Downloads 316
3493 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 404
3492 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production

Authors: Daniel Fozer

Abstract:

Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.

Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae

Procedia PDF Downloads 139
3491 Real-Time Control of Grid-Connected Inverter Based on labVIEW

Authors: L. Benbaouche, H. E. , F. Krim

Abstract:

In this paper we propose real-time control of grid-connected single phase inverter, which is flexible and efficient. The first step is devoted to the study and design of the controller through simulation, conducted by the LabVIEW software on the computer 'host'. The second step is running the application from PXI 'target'. LabVIEW software, combined with NI-DAQmx, gives the tools to easily build applications using the digital to analog converter to generate the PWM control signals. Experimental results show that the effectiveness of LabVIEW software applied to power electronics.

Keywords: real-time control, labview, inverter, PWM

Procedia PDF Downloads 499
3490 Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow

Authors: Joshua Kim Schimpf, Kyun Doo Kim, Jaseok Heo

Abstract:

In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants).

Keywords: droplet, entrainment, deposition, horizontal

Procedia PDF Downloads 371
3489 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 63