Search results for: Momordica charantia plant extract
2448 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2332447 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis
Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem
Abstract:
Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity
Procedia PDF Downloads 1632446 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom
Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr
Abstract:
The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation
Procedia PDF Downloads 2732445 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.Keywords: EEG, epilepsy, phase correlation, seizure
Procedia PDF Downloads 3102444 A Preliminary Study for Building an Arabic Corpus of Pair Questions-Texts from the Web: Aqa-Webcorp
Authors: Wided Bakari, Patrce Bellot, Mahmoud Neji
Abstract:
With the development of electronic media and the heterogeneity of Arabic data on the Web, the idea of building a clean corpus for certain applications of natural language processing, including machine translation, information retrieval, question answer, become more and more pressing. In this manuscript, we seek to create and develop our own corpus of pair’s questions-texts. This constitution then will provide a better base for our experimentation step. Thus, we try to model this constitution by a method for Arabic insofar as it recovers texts from the web that could prove to be answers to our factual questions. To do this, we had to develop a java script that can extract from a given query a list of html pages. Then clean these pages to the extent of having a database of texts and a corpus of pair’s question-texts. In addition, we give preliminary results of our proposal method. Some investigations for the construction of Arabic corpus are also presented in this document.Keywords: Arabic, web, corpus, search engine, URL, question, corpus building, script, Google, html, txt
Procedia PDF Downloads 3242443 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio
Authors: Tamal Roy, Anuradha Bhat
Abstract:
Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.Keywords: algorithm, associative cue, habitat complexity, population, spatial learning
Procedia PDF Downloads 2912442 Control of Fungal Growth in Sweet Orange and Mango Juices by Justica flava and Afromomum melegueta Extracts
Authors: Adferotimi Banso
Abstract:
A laboratory investigation was conducted to determine the effect of Justica flava and Aframonium melegueta on the growth of Aspergillus niger, Rhizopus stolonifer and Fusarium species in sweet orange and mango juices. Aqueous extract (3%v/v) of Justica flava and Aframonium melegueta reduced the growth of the fungi, a combination of 2% (v/v) each of Justica flava and Aframonium melegueta extracts reduced the growth better. Partial purification of aqueous extracts of Justica flava and Aframonium melegueta showed that ethyl acetate fraction of the extracts exhibited the highest level of inhibition of growth of the test fungi compared with diethyl ether and n-hexane fractions. The results suggest that extracts of Justica flava and Aframonium melegueta may be important substitutes for conventional chemical preservatives in the processing of fruit juices.Keywords: aqueous, fraction, mango, orange, purification, sweet
Procedia PDF Downloads 3522441 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 752440 Inhibition of Pipelines Corrosion Using Natural Extracts
Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed
Abstract:
The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds
Procedia PDF Downloads 5092439 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 3472438 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 3832437 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle
Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya
Abstract:
The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.Keywords: optimization, R744, subcooling, transcritical
Procedia PDF Downloads 3092436 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1662435 Efficient Subsurface Mapping: Automatic Integration of Ground Penetrating Radar with Geographic Information Systems
Authors: Rauf R. Hussein, Devon M. Ramey
Abstract:
Integrating Ground Penetrating Radar (GPR) with Geographic Information Systems (GIS) can provide valuable insights for various applications, such as archaeology, transportation, and utility locating. Although there has been progress toward automating the integration of GPR data with GIS, fully automatic integration has not been achieved yet. Additionally, manually integrating GPR data with GIS can be a time-consuming and error-prone process. In this study, actual, real-world GPR applications are presented, and a software named GPR-GIS 10 is created to interactively extract subsurface targets from GPR radargrams and automatically integrate them into GIS. With this software, it is possible to quickly and reliably integrate the two techniques to create informative subsurface maps. The results indicated that automatic integration of GPR with GIS can be an efficient tool to map and view any subsurface targets in their appropriate location in a 3D space with the needed precision. The findings of this study could help GPR-GIS integrators save time and reduce errors in many GPR-GIS applications.Keywords: GPR, GIS, GPR-GIS 10, drone technology, automation
Procedia PDF Downloads 932434 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: evolving learning, knowledge extraction, knowledge graph, text mining
Procedia PDF Downloads 4592433 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool
Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid
Abstract:
The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.Keywords: LNG, pool fire, spill, radiation
Procedia PDF Downloads 4042432 Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan
Authors: Kiran Nawaz, Ahmad Ali Shahid, Sehrish Iftikhar, Waheed Anwar, Muhammad Nasir Subhani
Abstract:
Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens.Keywords: blastn, bioassay, corn meal agar(CMA), oomycetes
Procedia PDF Downloads 2462431 Development and Evaluation of a Calcium Rich Plant-Based Supplement on Bone Turnover of Peri and Post Menopausal Women
Authors: Gayathri.G, Hemamalini.A.J, Chandrasekaran.A
Abstract:
Problem statement: Nutritional deficiency, especially calcium, may lead to poor bone formation and mineralization. Although there are plenty of synthetic supplements available, it is essential to make a calcium rich food supplement accessible to combat calcium deficiency that could be readily prepared at the household level. Thus the current study aimed to formulate and standardize an indigenous low-cost calcium-rich food supplement and to study the impact of supplementation on the bone resorption and formation markers. Methods: A Randomized controlled trial was conducted with 60 subjects distributed equally in control and experimental groups, including perimenopausal and postmenopausal women. A plant-based calcium-rich product was developed and supplemented in form of balls as a midmorning and evening snack by addition of optimized proportions of leaves of Sesbania Grandiflora, seeds of Sesamum indicum, Eleusine coracana, Glycine max, Vigna mungo for a period of 6 months. Postmenopausal and perimenopausal women received 1200mg and 800mg of calcium per day from the supplemented, respectively. Outcome measures like serum calcium; betacrosslaps (bone resorption marker) and total P1NP (bone absorption marker) were assessed after 3 months and after 6 months. Results: There were no significant changes seen in the serum calcium and total P1NP levels (bone formation marker) among the subjects during the supplementation period. The bone resorption marker (betacrosslaps) reduced in all the groups and the reduction (0.32 ± 0.130 ng/ml to 0.25 ± 0.130 ng/ml) was found to be statistically highly significant (p < 0.01) in experimental group of perimenopausal subjects and significant (p < 0.05) in experimental group of postmenopausal subjects (1.11 ± 0.290 ng/ml to 0.42 ± 0.263 ng/ml). Conclusion: With the current severe calcium deficiency in the Indian population, integrating low-cost, calcium-rich native foods that could be readily prepared at household level would be useful in raising the nutritional consumption of calcium, which would, in turn, decrease bone turnover.Keywords: calcium, sesbania grandiflora, sesamum indicum, eleusine coracana, glycine max, vigna mungo, postmenopause, perimenopause, bone resorption, bone absorption, betacrosslaps, total P1NP
Procedia PDF Downloads 1352430 Influence of Farnesol on Growth and Development of Dysdercus koenigii
Authors: Shailendra Kumar, Kamal Kumar Gupta
Abstract:
Dysdercus koenigii is an economically important pest of cotton worldwide. The pest damages the crop by sucking sap, staining lint, reducing the oil content of the seeds and deteriorating the quality of cotton. Plant possesses a plethora of secondary metabolites which are used as defense mechanism against herbivores. One of the important categories of such chemicals is insect growth regulators and the intermediates in their biosynthesis. Farnesol belongs to sesquiterpenoid. It is an intermediate in Juvenile hormone biosynthetic pathway in insects has been widely reported in the variety of plants. This chemical can disrupt the normal metabolic function and therefore, affects various life processes of the insects. Present study tested the efficacy of farnesol against Dysdercus koenigii. 2μl of 5% (100µg) and 10% (200µg) of the farnesol was applied topically on the dorsum of thoracic region of the newly emerged fifth instar nymphs of Dysdercus. The treated insects were observed daily for their survival, weight gain, and developmental anomalies for a period of ten days. The results indicated that treatment with 200µg farnesol decreased survival of the insects to 70% after 24h of exposure. At lower doses, no significant decrease in the survival was observed. However, the surviving nymphs showed alteration in growth, development, and metamorphosis. The weight gain in the treated nymphs showed deviation from control. The treated nymphs showed an increase in mortality during subsequent days and increase in the nymphal duration. The number of nymphs undergoing metamorphosis decreased to 46% and 88% in the treatments with the dose of 200µg and 100µg respectively. Severe developmental anomalies were also observed in the treated nymphs. The treated nymphs moulted into supernumerary nymphs, adultoids, adults with exuviae attached and adults with wing deformities. On treatment with 200µg; 26% adultoid, 4% adults with exuviae attached and 12% adults with wing deformed were produced. Treatment with 100µg resulted in production of 34% adultoid, 26% adults with deformed wing and 4% adults with exuviae attached. Many of the treated nymphs did not metamorphose into adults, remained in nymphal stage and died. Our results indicated potential application plant-derived secondary metabolites like farnesol in the management of Dysdercus population.Keywords: development, Dysdercus koenigii, farnesol, survival
Procedia PDF Downloads 3572429 MIMO PID Controller of a Power Plant Boiler–Turbine Unit
Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof
Abstract:
This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques
Procedia PDF Downloads 3292428 Development and Evaluation of Antimicrobial Herbal Mouthwash Including Methanolic Extracts of Beautea monosperma and Cordia obliqua
Authors: Reenu Yadav, S. K. Yadav
Abstract:
Herbal therapy has been used for daily oral health care to prevent, treat or cure oral conditions from halitosis to periodontal diseases. The importance of mouth and teeth cleanliness has been recognized from the earliest days of civilization to the 21st century. In the present study, leaves and seeds of Cordia obliqua and barks and twigs of Beautea monosperma, which is used traditionally for oral diseases was evaluated for its antimicrobial activity. The antimicrobial activity tests indicated that the methanolic extract exhibited stronger activities against the commonly encountered oral bacterial and fungal pathogens. The mouthwash formulation prepared and it is compared with marketed formulation HiOra. The results indicated that the herbal mouthwash could inhibit the growth of oral pathogens and may prevent plaque and other periodontal diseases caused by dental pathogens.Keywords: herbal mouthwash, bio medicine, life sciences, herbal extracts
Procedia PDF Downloads 3502427 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 4632426 Genomic Analysis of Whole Genome Sequencing of Leishmania Major
Authors: Fatimazahrae Elbakri, Azeddine Ibrahimi, Meryem Lemrani, Dris Belghyti
Abstract:
Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy.Keywords: Leshmania major, cutaneous Leishmania, NGS, genomic, somy, variant calling
Procedia PDF Downloads 802425 Contribution to the Study of the Fungal Flora Seed-Borne in Cereal: Wheat and Barley
Authors: M’lik Randa, Lakhdari Wassima, Dahliz Abderrahmène, Soud Adila, Hammi Hamida
Abstract:
In cereal culture, as in the most the vegetal productions the seeds play an important role in the development of the future plant. The healthy seeds are very important for the quality and quantity production. This study on a media (P.D.A) shows that an important mycoflora exists in the crops. Among the identified fungical, we notice the presence of Helminthosporium sp, Alternaria sp, Botrytis and Macrosporium. The use of the illness causing facies, especially for Helminthosporium, Alternaria and Botrytis emphasizes the relation between the seminicole inoculums and the appearance of symptoms on young plants noted by authors.Keywords: seeds, barley, wheat, fungical flora
Procedia PDF Downloads 4172424 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2572423 Critical Evaluation of Long Chain Hydrocarbons with Biofuel Potential from Marine Diatoms Isolated from the West Coast of India
Authors: Indira K., Valsamma Joseph, I. S. Bright
Abstract:
Introduction :Biofuels could replace fossil fuels and reduce our carbon footprint on the planet by technological advancements needed for sustainable and economic fuel production. Micro algae have proven to be a promising source to meet the current energy demand because of high lipid content and production of high biomass rapidly. Marine diatoms, which are key contributors in the biofuel sector and also play a significant role in primary productivity and ecology with high biodiversity and genetic and chemical diversity, are less well understood than other microalgae for producing hydrocarbons. Method :The marine diatom samples selected for hydrocarbon analysis were a total of eleven, out of which 9 samples were from the culture collection of NCAAH, and the remaining two of them were isolated by serial dilution method to get a pure culture from a mixed culture of microalgae obtained from the various cruise stations (350&357) FORV Sagar Sampada along the west coast of India. These diatoms were mass cultured in F/2 media, and the biomass harvested. The crude extract was obtained from the biomass by homogenising with n-hexane, and the hydrocarbons was further obtained by passing the crude extract through 500mg Bonna Agela SPE column and the quantitative analysis was done by GCHRMS analysis using HP-5 column and Helium gas was used as a carrier gas(1ml/min). The injector port temperature was 2400C, the detector temperature was 2500C, and the oven was initially kept at 600C for 1 minute and increased to 2200C at the rate of 60C per minute, and the analysis of a mixture of long chain hydrocarbons was done .Results:In the qualitative analysis done, the most potent hydrocarbon was found to be Psammodictyon Panduriforme (NCAAH-9) with a hydrocarbon mass of 37.27mg/g of the biomass and 2.1% of the total biomass 0f 1.395g and the other potent producer is Biddulphia(NCAAH 6) with hydrocarbon mass of 25.4mg/g of biomass and percentage of hydrocarbon is 1.03%. In the quantitative analysis by GCHRMS, the long chain hydrocarbons found in most of the marine diatoms were undecane, hexadecane, octadecane 3ethyl 5,2 ethyl butyl, Eicosane7hexyl, hexacosane, heptacosane, heneicosane, octadecane 3 methyl, triacontane. The exact mass of the long chain hydrocarbons in all the marine diatom samples was found to be Nonadecane 12C191H40, Tritriacontane,13-decyl-13-heptyl 12C501H102, Octadecane,3ethyl-5-(2-ethylbutyl 12C261H54, tetratetracontane 12C441H89, Eicosane, 7-hexyl 12C261H54. Conclusion:All the marine diatoms screened produced long chain hydrocarbons which can be used as diesel fuel with good cetane value example, hexadecane, undecane. All the long chain hydrocarbons can further undergo catalytic cracking to produce short chain alkanes which can give good octane values and can be used as gasoline. Optimisation of hydrocarbon production with the most potent marine diatom yielded long chain hydrocarbons of good fuel quality.Keywords: biofuel, hydrocarbons, marine diatoms, screening
Procedia PDF Downloads 792422 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.Keywords: land characterization, suitability, soil orders, soil organic carbon stock
Procedia PDF Downloads 1152421 Time-Frequency Modelling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub
Procedia PDF Downloads 3512420 Facility Detection from Image Using Mathematical Morphology
Authors: In-Geun Lim, Sung-Woong Ra
Abstract:
As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.Keywords: facility detection, satellite image, object, mathematical morphology
Procedia PDF Downloads 3822419 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 371