Search results for: Features of Bitcoin
1215 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images
Authors: Jingjue Bao, Ye Li, Yujie Qi
Abstract:
The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image
Procedia PDF Downloads 811214 Implementation of Free-Field Boundary Condition for 2D Site Response Analysis in OpenSees
Authors: M. Eskandarighadi, C. R. McGann
Abstract:
It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristics experience at the site. One-dimensional seismic site response analysis is the most common approach for investigating site response. This approach assumes that soil is homogeneous and infinitely extended in the horizontal direction. Therefore, tying side boundaries together is one way to model this behavior, as the wave passage is assumed to be only vertical. However, 1D analysis cannot capture the 2D nature of wave propagation, soil heterogeneity, and 2D soil profile with features such as inclined layer boundaries. In contrast, 2D seismic site response modeling can consider all of the mentioned factors to better understand local site effects on strong ground motions. 2D wave propagation and considering that the soil profile on the two sides of the model may not be identical clarifies the importance of a boundary condition on each side that can minimize the unwanted reflections from the edges of the model and input appropriate loading conditions. Ideally, the model size should be sufficiently large to minimize the wave reflection, however, due to computational limitations, increasing the model size is impractical in some cases. Another approach is to employ free-field boundary conditions that take into account the free-field motion that would exist far from the model domain and apply this to the sides of the model. This research focuses on implementing free-field boundary conditions in OpenSees for 2D site response analysisComparisons are made between 1D models and 2D models with various boundary conditions, and details and limitations of the developed free-field boundary modeling approach are discussed.Keywords: boundary condition, free-field, opensees, site response analysis, wave propagation
Procedia PDF Downloads 1581213 Enhancing Project Performance Forecasting using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management
Procedia PDF Downloads 491212 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties
Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino
Abstract:
Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato
Procedia PDF Downloads 3741211 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 4691210 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines
Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya
Abstract:
Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry
Procedia PDF Downloads 3161209 The Effect of an Abnormal Prefrontal Cortex on the Symptoms of Attention Deficit/Hyperactivity Disorder
Authors: Irene M. Arora
Abstract:
Hypothesis: Attention Deficit Hyperactivity Disorder is the result of an underdeveloped prefrontal cortex which is the primary cause for the signs and symptoms seen as defining features of ADHD. Methods: Through ‘PubMed’, ‘Wiley’ and ‘Google Scholar’ studies published between 2011-2018 were evaluated, determining if a dysfunctional prefrontal cortex caused the characteristic symptoms associated with ADHD. The search terms "prefrontal cortex", "Attention-Deficit/Hyperactivity Disorder", "cognitive control", "frontostriatal tract" among others, were used to maximize the assortment of relevant studies. Excluded papers were systematic reviews, meta-analyses and publications published before 2010 to ensure clinical relevance. Results: Nine publications were analyzed in this review, all of which were non-randomized matched control studies. Three studies found a decrease in the functional integrity of the frontostriatal tract fibers in conjunction with four studies finding impaired frontal cortex stimulation. Prefrontal dysfunction, specifically medial and orbitofrontal areas, displayed abnormal functionality of reward processing in ADHD patients when compared to their normal counterparts. A total of 807 subjects were studied in this review, yielding that a little over half (54%) presented with remission of symptoms in adulthood. Conclusion: While the prefrontal cortex shows the highest consistency of impaired activity and thinner volumes in patients with ADHD, this is a heterogenous disorder implicating its pathophysiology to the dysfunction of other neural structures as well. However, remission of ADHD symptomatology in adulthood was found to be attributable to increased prefrontal functional connectivity and integration, suggesting a key role for the prefrontal cortex in the development of ADHD.Keywords: prefrontal cortex, ADHD, inattentive, impulsivity, reward processing
Procedia PDF Downloads 1201208 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors
Authors: Saeed Vahedikamal, Ian Hepburn
Abstract:
Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID
Procedia PDF Downloads 981207 Manifestations of Tuberculosis in Otorhinolaryngology Practice: A Retrospective Study Conducted in a Coastal City of South India
Authors: Rithika Sriram, Kiran M. Bhojwani
Abstract:
Introduction : Tuberculosis of the head and neck has proved to be a diagnostic challenge for otorhinolarynologists around the world. These lesions are often misdiagnosed as cancer. So in order to contribute to a better understanding of these lesions, we have conducted our study among patients affected by TB in the head and neck region with the objective of assessing the various manifestations, presentations, diagnostic techniques, risk factors such as smoking and alcohol consumption, coexisting illnesses and treatment modalities. Materials and Methods: This was a retrospective study conducted over a three year period (2012-2014) in 2 hospitals affliated to Kasturba Medical College in Mangalore, South India. A semi structured proforma was used to capture information from the medical records pertaining to the various objectives of the study such as clinical features and history of smoking. Data was analysed using SPSS version 16.0 and results obtained were depicted as percentages. Chi square test was used to find association between the variables and p<0.05 was considered statistically significant. Results: 104 patients were found to have TB of the head and neck and among them,the most common manifestation was found to be Tubercular Lymphadenitis (86.53%), followed by laryngeal TB (4.8%), submandibular gland TB (3.8%), deep neck space abscess(3.8%) and adenotonsillar TB. FNAC was found to be the gold standard for the diagnosis of TB disease of the lymph node.26% of the patients had coexisting HIV infection and 16.3% of the patients had associated pulmonary TB. More than 20% of the patients were smokers. Most patients were treated using ATT. Conclusion: Tuberculosis affecting regions of head and neck is no longer uncommon. Sufficient knowledge and appropriate diagnostic means is required while dealing with these lesions and must be included in the differential diagnosis of pathological lesions of head and neck.Keywords: FNAC, Mangalore, smoking, tuberculosis
Procedia PDF Downloads 2781206 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells
Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova
Abstract:
The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers
Procedia PDF Downloads 2991205 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 5731204 Characteristics of Inclusive Circular Business Models in Social Entrepreneurship
Authors: Svitlana Yermak, Olubukola Aluko
Abstract:
The purpose of this study was a literature review on the topic of social entrepreneurship, a review of new trends and best practices, the study of existing inclusive business models and their interaction with the principles of the circular economy for possible implementation in the practice of Ukraine in war and post-war times in conditions of scarce resources. Thus, three research questions were identified and substantiated: to determine the characteristics of social entrepreneurship, consider the features in Ukraine and the UK; highlight the criteria for inclusion in social entrepreneurship and its legal support; explore examples of existing inclusive circular business models to illustrate how the two concepts may be combined. A detailed review of the literature selected from the Scopus and Web of Science databases was carried out. The study revealed signs of social entrepreneurship, the main of which are doing business and making a profit, as well as the social orientation of the business, which is prescribed in the constituent documents of the enterprise immediately upon its creation. Considered are the characteristics of social entrepreneurship in the UK and Ukraine. It has been established that in the UK, social entrepreneurship is clearly regulated by the state; there are special legislative norms and support programs, in contrast to Ukraine, where these processes are only partially regulated. The study identified the main criteria for inclusion in inclusive circular business models: economic (sustainability and efficiency, job creation and economic growth, promotion of local development), social (accessibility, equity and fairness, inclusion and participation), and resources in their interconnection. It is substantiated that the resource criterion is especially important for this type of business model. It provides for the efficient and sustainable use of resources, as well as the cyclical nature of resources. And it was concluded that the principles of the circular economy not only do not contradict but, on the contrary, complement and expand the inclusive business models on which social entrepreneurship is based.Keywords: social entrepreneurship, inclusive business models, circular economy, inclusion criteria
Procedia PDF Downloads 1011203 REFLEX: A Randomized Controlled Trial to Test the Efficacy of an Emotion Regulation Flexibility Program with Daily Measures
Authors: Carla Nardelli, Jérome Holtzmann, Céline Baeyens, Catherine Bortolon
Abstract:
Background. Emotion regulation (ER) is a process associated with difficulties in mental health. Given its transdiagnostic features, its improvement could facilitate the recovery of various psychological issues. A limit of current studies is the lack of knowledge regarding whether available interventionsimprove ER flexibility (i.e., the ability to implement ER strategies in line with contextual demands), even though this capacity has been associated with better mental health and well-being. Therefore, the aim of the study is to test the efficacy of a 9-weeks ER group program (the Affect Regulation Training-ART), using the most appropriate measures (i.e., experience sampling method) in a student population. Plus, the goal of the study is to explore the potential mediative role of ER flexibility on mental health improvement. Method. This Randomized Controlled Trial will comparethe ER program group to an active control group (a relaxation program) in 100 participants. To test the mediative role of ER flexibility on mental health, daily measures will be used before, during, and after the interventions to evaluate the extent to which participants are flexible in their ER. Expected outcomes. Using multilevel analyses, we expect an improvement in anxious-depressive symptomatology for both groups. However, we expect the ART group to improve specifically on ER flexibility ability and the last to be a mediative variable on mental health. Conclusion. This study will enhance knowledge on interventions for students and the impact of interventions on ER flexibility. Also, this research will improve knowledge on ecological measures for assessing the effect of interventions. Overall, this project represents new opportunities to improve ER skills to improve mental health in undergraduate students.Keywords: emotion regulation flexibility, experience sampling method, psychological intervention, emotion regulation skills
Procedia PDF Downloads 1361202 Nutritionists' Perspective on the Conception of a Telenutrition Platform for Diabetes Care: Qualitative Study
Authors: Choumous Mannoubi, Dahlia Kairy, Brigitte Vachon
Abstract:
The use of technology allows clinicians to provide an individualized approach in a cost-effective manner and to reach a broader client base more easily. Such interventions can be effective in ensuring self-management and follow-up of people with diabetes, reducing the risk of complications by improving accessibility to care services, and better adherence to health recommendations. Consideration of users' opinions and fears to inform the design and implementation stages of these telehealth services seems to be essential to improve their acceptance and usability. The objective of this study is to describe the telepractice of nutritionists supporting the therapeutic management of diabetic patients and document the functional requirements of nutritionists for the design of a tele-nutrition platform. To best identify the requirements and constraints of nutritionists, we conducted individual semi-structured interviews with 10 nutritionists who offered tele-nutrition services. Using a qualitative design with a descriptive approach based on the Nutrition Care Process Model (mNCP) framework, we explored in depth the state of nutritionists' telepractice in public and private health care settings, as well as their requirements for teleconsultation. Qualitative analyses revealed that nutritionists primarily used telephone calls during the COVID 19 pandemic to provide teleconsultations. Nutritionists identified the following important features for the design of a tele-nutrition platform: it should support interprofessional collaboration, allow for the development and monitoring of a care plan, integrate with the existing IT environment, be easy to use, accommodate different levels of patient literacy, and allow for easy sharing of educational materials to support nutrition education.Keywords: telehealth, nutrition, diabetes, telenutrition, teleconsultation, telemonitoring
Procedia PDF Downloads 1331201 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3621200 Teachers' Attitude and Knowledge as Predictors of Effective Use of Digital Devices for the Education of Students with Special Needs in Oyo, Nigeria
Authors: Faseluka Olamide Tope
Abstract:
Giving quality education to students with special needs requires that all necessary resources should be harnessed and digital devices has become important part of resources used as instructional materials in educating students with special needs. Teachers who will make use of these technologies are considered as a part of the most important elements in any educational programme and the effective usage of these technologies largely depends on them. Out of numerous determinants of the effective use of these digital devices, this study examines teachers’ attitude and knowledge as predictors of effective use of digital technology for education of special needs student in Oyo state, Nigeria. The descriptive survey research design of the expo-facto type was adopted for the study, using simple random sampling technique. The study was carried out among sixty (60) participants. Two research questions and two research hypotheses were formulated and used. The data collected through the research instruments for the study were analysedusing frequency, percentage, mean and standard deviation, Pearson, Product, Moment Correlation (PPMC) and Multiple Regression Analysis. The study revealed a significant relationship between teachers attitude (50, < 0.05) and effective use of digital technologies for special needs students. Furthermore, there was a significant contribution F (F=4.289; R=0.876 and R2 =0.758) in the joint contribution of the independent variable (teacher’s attitude and teacher’s knowledge) and dependent variable (effective use of digital technologies) while teachers knowledge have the highest contribution(b=7.926, t=4.376), the study therefore revealed that teachers attitude and knowledge are potent factors that predicts the effective usage of digital technologies for the education of special needs student. The study recommended that due to the ever-changing nature of technology which comes with new features, teachers should be equipped with appropriate knowledge in order to effectively make use of them and teachers should also develop right attitude toward the use of digital technologiesKeywords: teachers’ knowledge, teachers’ attitude, digital devices, special needs students
Procedia PDF Downloads 471199 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study
Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand
Abstract:
Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.Keywords: holography, 3D scans, hologram box, metrology, point cloud
Procedia PDF Downloads 891198 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting
Procedia PDF Downloads 3311197 Motivating Factors of Mobile Device Applications toward Learning
Authors: Yen-Mei Lee
Abstract:
Mobile learning (m-learning) has been applied in the education field not only because it is an alternative to web-based learning but also it possesses the ‘anytime, anywhere’ learning features. However, most studies focus on the technology-related issue, such as usability and functionality instead of addressing m-learning from the motivational perspective. Accordingly, the main purpose of the current paper is to integrate critical factors from different motivational theories and related findings to have a better understand the catalysts of an individual’s learning motivation toward m-learning. The main research question for this study is stated as follows: based on different motivational perspectives, what factors of applying mobile devices as medium can facilitate people’s learning motivations? Self-Determination Theory (SDT), Uses and Gratification Theory (UGT), Malone and Lepper’s taxonomy of intrinsic motivation theory, and different types of motivation concepts were discussed in the current paper. In line with the review of relevant studies, three motivating factors with five essential elements are proposed. The first key factor is autonomy. Learning on one’s own path and applying personalized format are two critical elements involved in the factor of autonomy. The second key factor is to apply a build-in instant feedback system during m-learning. The third factor is creating an interaction system, including communication and collaboration spaces. These three factors can enhance people’s learning motivations when applying mobile devices as medium toward learning. To sum up, in the currently proposed paper, with different motivational perspectives to discuss the m-learning is different from previous studies which are simply focused on the technical or functional design. Supported by different motivation theories, researchers can clearly understand how the mobile devices influence people’s leaning motivation. Moreover, instructional designers and educators can base on the proposed factors to build up their unique and efficient m-learning environments.Keywords: autonomy, learning motivation, mobile learning (m-learning), motivational perspective
Procedia PDF Downloads 1811196 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 901195 The Two Layers of Food Safety and GMOs in the Hungarian Agricultural Law
Authors: Gergely Horváth
Abstract:
The study presents the complexity of food safety dividing it into two layers. Beyond the basic layer of requirements, there is a more demanding higher level linked with quality and purity aspects. It would be important to give special prominence to both layers, given that massive illnesses are caused by foods even though officially licensed. Then the study discusses an exciting safety challenge stemming from the risks of genetically modified organisms (GMOs). Furthermore, it features legal case examples that illustrate how certain liability questions are solved or not yet decided in connection with the production of genetically modified crops. In addition, a special kind of land grabbing, more precisely land grabbing from non-GMO farming systems can also be noticed as well as a new phenomenon eroding food sovereignty. Coexistence, the state where organic, conventional, and GM farming systems are standing alongside each other is an unsuitable experiment that cannot be successful, because of biophysical reasons (such as cross-pollination). Agricultural and environmental lawyers both try to find the optimal solution. Agri-environmental measures are introduced as a special subfield of law maintaining also food safety. The important steps of agri-environmental legislation are aiming at the protection of natural values, the environmental media and strengthening food safety as well, practically the quality of agricultural products intended for human consumption. The major findings of the study focus on searching for the appropriate approach capable of solving the security and safety problems of food production. The most interesting concepts of the Hungarian national and EU food law legislation are analyzed in more detail with descriptive, analytic and comparative methods.Keywords: food law, food safety, food security, GMO, Genetically Modified Organisms, agri-environmental measures
Procedia PDF Downloads 4381194 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1591193 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB
Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir
Abstract:
The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability
Procedia PDF Downloads 5081192 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 881191 The Influence of Migration on Migrants' Culture: A Study on Egyptian Nubians' Migration to Investigate Culture Changes
Authors: Tarek Hassan, Sanaa Abouras
Abstract:
Some factors such as interaction of migration process, cultural identity have an impact in a way that may lead to cultural disinheritance. Even if migrants' culture would not be lost, it may be affected by the new society culture. Therefore, it is anticipated that migration of an ethnic group would impact the culture of that group. Nubians; an ethnic group originated in South Egypt, have experienced migration that took place in the sixties of the past century. Nubians were forced to leave their origin land and relocate to Kom Ombo; an Egyptian town to the north of Aswan. The effect of migration on national culture, social homogeneity or the interest of social contact influences the attitudes of natives towards migration. Hence, it is very important for societies to help migrants to adapt to the new culture and at the same time not to impede migrants' effort to maintain their own culture. This study aims to investigate the effect of internal migration on the culture of Egyptian Nubians in order to predict if Nubian can maintain their own culture after the migration. Research question: what is the cultural influence of Nubians' migration from Egyptian Nubia to their new destinations? The researchers' hypothesis: there is mutual influence between the two cultures of Nubians and non-Nubians in Egypt. Results supported researchers' hypothesis as they observed that the Nubians managed to reserve balance between the maintenance of their own culture and the adoption of some cultural features of the community of their new destination(s). Also, the study examined why Nubians adhere to their culture although they left their land forever. Questionnaire and interviews were used to collect data from 80 informants; 40 Nubians and 40 non-Nubians in Kom-Ombo and the two cities of Cairo and Alexandria. Results suggested that there is obvious mutual cultural impact between Nubians and non-Nubians. The findings of this study would trigger the researchers to conduct further research on minorities for the deeper understanding of the impact of/on the culture of minorities.Keywords: culture change, culture influence, culture maintenance, minority migration
Procedia PDF Downloads 2271190 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs
Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua
Abstract:
Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.Keywords: adsorption, organic dyes, iodine, metal organic frameworks
Procedia PDF Downloads 2761189 An Overview of Informal Settlement Upgrading Strategies in Kabul City and the Need for an Integrated Multi-Sector Upgrading Model
Authors: Bashir Ahmad Amiri, Nsenda Lukumwena
Abstract:
The developing economies are experiencing an unprecedented rate of urbanization, mainly the urbanization of poverty which is leading to sprawling of slums and informal settlement. Kabul, being the capital and primate city of Afghanistan is grossly encountered to the informal settlement where the majority of the people consider to be informal. Despite all efforts to upgrade and minimize the growth of these settlements, they are growing rapidly. Various interventions have been taken by the government and some international organizations from physical upgrading to urban renewal, but none of them have succeeded to solve the issue of informal settlement. The magnitude of the urbanization and the complexity of informal settlement in Kabul city, and the institutional and capital constraint of the government calls for integration and optimization of currently practiced strategies. This paper provides an overview of informal settlement formation and the conventional upgrading strategies in Kabul city to identify the dominant/successful practices and rationalize the conventional upgrading modes. For this purpose, Hothkhel has been selected as the case study, since it represents the same situation of major informal settlements of the city. Considering the existing potential and features of the Hothkhel and proposed land use by master plan this paper intends to find a suitable upgrading mode for the study area and finally to scale up the model for the city level upgrading. The result highlights that the informal settlements of Kabul city have high (re)development capacity for accepting the additional room without converting the available agricultural area to built-up. The result also indicates that the integrated multi-sector upgrading has the scale-up potential to increase the reach of beneficiaries and to ensure an inclusive and efficient urbanization.Keywords: informal settlement, upgrading strategies, Kabul city, urban expansion, integrated multi-sector, scale-up
Procedia PDF Downloads 1751188 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 1151187 Climate Trends, Variability, and Impacts of El Niño-Southern Oscillation on Rainfall Amount in Ethiopia
Authors: Zerihun Yohannes Amare, Belayneh Birku Geremew, Nigatu Melise Kebede, Sisaynew Getahun Amera
Abstract:
In Ethiopia, agricultural production is predominantly rainfed. The El Niño Southern Oscillation (ENSO) is the driver of climate variability, which affects the agricultural production system in the country. This paper aims to study trends, variability of rainfall, and impacts of El Niño Southern Oscillation (ENSO) on rainfall amount. The study was carried out in Ethiopia's Western Amhara National Regional State, which features a variety of seasons that characterize the nation. Monthly rainfall data were collected from fifteen meteorological stations of Western Amhara. Selected El Niño and La Niña years were also extracted from National Oceanic and Atmospheric Administration (NOAA) from 1986 to 2015. Once the data quality was checked and inspected, the monthly rainfall data of the selected stations were arranged in Microsoft Excel Spreadsheet and analyzed using XLSTAT software. The coefficient of variation and the Mann-Kendall non-parametric statistical test was employed to analyze trends and variability of rainfall and temperature. The long-term recorded annual rainfall data indicated that there was an increasing trend from 1986 to 2015 insignificantly. The rainfall variability was less (Coefficient of Variation, CV = 8.6%); also, the mean monthly rainfall of Western Amhara decreased during El Niño years and increased during La Niña years, especially in the rainy season (JJAS) over 30 years. This finding will be useful to suggest possible adaptation strategies and efficient use of resources during planning and implementation.Keywords: rainfall, Mann-Kendall test, El Niño, La Niña, Western Amhara, Ethiopia
Procedia PDF Downloads 981186 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 110