Search results for: symptom cluster
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1162

Search results for: symptom cluster

922 Network and Sentiment Analysis of U.S. Congressional Tweets

Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert

Abstract:

Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.

Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling

Procedia PDF Downloads 33
921 Determinants of Post-Psychotic Depression in Schizophrenia Patients in ACSH and Mekellle Hospital Tigray, Ethiopia, 2019

Authors: Ashenafi Ayele, Shewit Haftu, Tesfalem Araya

Abstract:

Background: “Post-psychotic depression”, “post schizophrenic depression”, and “secondary depression” have been used to describe the occurrence of depressive symptoms during the chronic phase of schizophrenia. Post-psychotic depression is the most common cause of death due to suicide in schizophrenia patients. Overall lifetime risk for patients with schizophrenia is 50% for suicide attempts and 9-13% lifetime risk for completed suicide and also it is associated with poor prognosis and poor quality of life. Objective: To assess determinant of post psychotic depression in schizophrenia patients ACSH and Mekelle General Hospital, Tigray Ethiopia 2019. Methods: An institutional based unmatched case control study was conducted among 69 cases and 138 controls with the ratio of case to control 1 ratio 2. The sample is calculated using epi-info 3.1 to assess the determinant factors of post-psychotic depression in schizophrenia patients. The cases were schizophrenia patients who have been diagnosed at least for more than one-year stable for two months, and the controls are any patients who are diagnosed as schizophrenia patients. Study subjects were selected using a consecutive sampling technique. The Calgary depression scale for schizophrenia self-administered questionnaire was used. Before the interview, it was assessed the client’s capacity to give intended information using a scale called the University of California, San Diego Brief Assessment of Capacity to Consent (UBACC). Bivariant and multiple Logistic regression analysis was performed to determine between the independent and dependent variables. The significant independent predictor was declared at 95% confidence interval and P-value of less than 0.05. Result: Females were affected by post psychotic depression with the (AOR=2.01, 95%CI: 1.003- 4.012, P= 0.49).Patients who have mild form of positive symptom of schizophrenia affected by post psychotic depression with (AOR =4.05, 95%CI: 1.888- 8.7.8, P=0001).Patients who have minimal form of negative symptom of schizophrenia are affected by post psychotic depression with (AOR =4.23, 95%CI: 1.081-17.092, P=.038). Conclusion: In this study, sex (female) and presence of positive and negative symptoms of schizophrenia were significantly associated. It is recommended that the post psychotic depression should be assessed in every schizophrenia patient to decrease the severity of illness, and to improve patient’s quality of life.

Keywords: determinants, post-psychotic depression, Mekelle city

Procedia PDF Downloads 122
920 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 12
919 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 143
918 The Effectiveness of the Recovering from Child Abuse Programme (RCAP) for the Treatment of CPTSD: A Pilot Study

Authors: Siobhan Hegarty, Michael Bloomfield, Kim Entholt, Dorothy Williams, Helen Kennerley

Abstract:

Complex Post-Traumatic Stress Disorder (CPTSD) confers greater risk of poor outcomes than does Post-Traumatic Stress Disorder (PTSD). Despite this, the current treatment guidelines for CPTSD aim to reduce only the ‘core’ symptoms of re-experiencing, hyper-vigilance and avoidance, while not addressing the Disturbances of Self Organisation (DSO) symptoms that distinguish this novel diagnosis from PTSD. The Recovering from Child Abuse Programme (RCAP) is a group protocol, based on the principles of cognitive behavioural therapy (CBT). Preliminary evidence suggests the program is effective at reducing DSO symptoms. This pilot study is the first to investigate the potential effectiveness of the RCAP for the specific treatment of CPTSD. This study was conducted as a service evaluation in a secondary care, traumatic stress service. Treatment was delivered once a week, in two-hour sessions, to ten existing female CPTSD patients of the service, who had experienced sexual abuse in childhood. The programme was administered by two therapists and two additional facilitators, following the RCAP protocol manual. Symptom severity was measured before the administration of therapy and was tracked across a range of measures (International Trauma Questionnaire; Patient Health Questionnaire; Community Assessment of Psychic Experience; Work and Social Adjustment Scale) at five time points, over the course of treatment. Qualitative appraisal of the programme was gathered via weekly feedback forms and from audio-taped recordings of verbal feedback given during group sessions. Preliminary results suggest the programme causes a slight reduction in CPTSD and depressive symptom severity and preliminary qualitative analysis suggests that the RCAP is both helpful and acceptable to group members. Final results and conclusions will follow completed thematic analysis of results.

Keywords: Child sexual abuse, Cognitive behavioural therapy, Complex post-traumatic stress disorder, Recovering from child abuse programme

Procedia PDF Downloads 135
917 Visualization and Performance Measure to Determine Number of Topics in Twitter Data Clustering Using Hybrid Topic Modeling

Authors: Moulana Mohammed

Abstract:

Topic models are widely used in building clusters of documents for more than a decade, yet problems occurring in choosing optimal number of topics. The main problem is the lack of a stable metric of the quality of topics obtained during the construction of topic models. The authors analyzed from previous works, most of the models used in determining the number of topics are non-parametric and quality of topics determined by using perplexity and coherence measures and concluded that they are not applicable in solving this problem. In this paper, we used the parametric method, which is an extension of the traditional topic model with visual access tendency for visualization of the number of topics (clusters) to complement clustering and to choose optimal number of topics based on results of cluster validity indices. Developed hybrid topic models are demonstrated with different Twitter datasets on various topics in obtaining the optimal number of topics and in measuring the quality of clusters. The experimental results showed that the Visual Non-negative Matrix Factorization (VNMF) topic model performs well in determining the optimal number of topics with interactive visualization and in performance measure of the quality of clusters with validity indices.

Keywords: interactive visualization, visual mon-negative matrix factorization model, optimal number of topics, cluster validity indices, Twitter data clustering

Procedia PDF Downloads 134
916 University Clusters Using ICT for Teaching and Learning

Authors: M. Roberts Masillamani

Abstract:

There is a phenomenal difference, as regard to the teaching methodology adopted at the urban and the rural area colleges. However, bright and talented student may be from rural back ground even. But there is huge dearth of the digitization in the rural areas and lesser developed countries. Today’s students need new skills to compete and successful in the future. Education should be combination of practical, intellectual, and social skills. What does this mean for rural classrooms and how can it be achieved. Rural colleges are not able to hire the best resources, since the best teacher’s aim is to move towards the city. If city is provided everywhere, then there will be no rural area. This is possible by forming university clusters (UC). The University cluster is a group of renowned and accredited universities coming together to bridge this dearth. The UC will deliver the live lectures and allow the students’ from remote areas to actively participate in the classroom. This paper tries to present a plan of action of providing a better live classroom teaching and learning system from the city to the rural and the lesser developed countries. This paper titled “University Clusters using ICT for teaching and learning” provides a true concept of opening live digital classroom windows for rural colleges, where resources are not available, thus reducing the digital divide. This is different from pod casting a lecture or distance learning and eLearning. The live lecture can be streamed through digital equipment to another classroom. The rural students can collaborate with their peers and critiques, be assessed, collect information, acquire different techniques in assessment and learning process. This system will benefit rural students and teachers and develop socio economic status. This will also will increase the degree of confidence of the Rural students and teachers. Thus bringing about the concept of ‘Train the Trainee’ in reality. An educational university cloud for each cluster will be built remote infrastructure facilities (RIF) for the above program. The users may be informed, about the available lecture schedules, through the RIF service. RIF with an educational cloud can be set by the universities under one cluster. This paper talks a little more about University clusters and the methodology to be adopted as well as some extended features like, tutorial classes, library grids, remote laboratory login, research and development.

Keywords: lesser developed countries, digital divide, digital learning, education, e-learning, ICT, library grids, live classroom windows, RIF, rural, university clusters and urban

Procedia PDF Downloads 471
915 The Relationship between Proximity to Sources of Industrial-Related Outdoor Air Pollution and Children Emergency Department Visits for Asthma in the Census Metropolitan Area of Edmonton, Canada, 2004/2005 to 2009/2010

Authors: Laura A. Rodriguez-Villamizar, Alvaro Osornio-Vargas, Brian H. Rowe, Rhonda J. Rosychuk

Abstract:

Introduction/Objectives: The Census Metropolitan Area of Edmonton (CMAE) has important industrial emissions to the air from the Industrial Heartland Alberta (IHA) at the Northeast and the coal-fired power plants (CFPP) at the West. The objective of the study was to explore the presence of clusters of children asthma ED visits in the areas around the IHA and the CFPP. Methods: Retrospective data on children asthma ED visits was collected at the dissemination area (DA) level for children between 2 and 14 years of age, living in the CMAE between April 1, 2004, and March 31, 2010. We conducted a spatial analysis of disease clusters around putative sources with count (ecological) data using descriptive, hypothesis testing, and multivariable modeling analysis. Results: The mean crude rate of asthma ED visits was 9.3/1,000 children population per year during the study period. Circular spatial scan test for cases and events identified a cluster of children asthma ED visits in the DA where the CFPP are located in the Wabamum area. No clusters were identified around the IHA area. The multivariable models suggest that there is a significant decline in risk for children asthma ED visits as distance increases around the CFPP area this effect is modified at the SE direction with mean angle 125.58 degrees, where the risk increases with distance. In contrast, the regression models for IHA suggest that there is a significant increase in risk for children asthma ED visits as distance increases around the IHA area and this effect is modified at SW direction with mean angle 216.52 degrees, where the risk increases at shorter distances. Conclusions: Different methods for detecting clusters of disease consistently suggested the existence of a cluster of children asthma ED visits around the CFPP but not around the IHA within the CMAE. These results are probably explained by the direction of the air pollutants dispersion caused by the predominant and subdominant wind direction at each point. The use of different approaches to detect clusters of disease is valuable to have a better understanding of the presence, shape, direction and size of clusters of disease around pollution sources.

Keywords: air pollution, asthma, disease cluster, industry

Procedia PDF Downloads 282
914 Locative Media Apps for Re-Building Urban Experience: Discovering Cities Through Technology

Authors: Kerem Rızvanoglu, Serhat Güney, Betül Aydoğan, Emre Kızılkaya, Ayşegül Boyalı, Onurcan Güden

Abstract:

This study investigates the urban experience of international students coming to Istanbul with exchange programs and reveals how locative media applications accompany their urban experiences. The sample of the research consists of international students who lived, perceived, and conceived the city on a daily basis during the academic year of 2022. Focusing on this particular sample would demonstrate the opportunities and authentic experiences offered by the city as well as the prevalent urban problems for the foreigners. In this regard, international students' urban experience in Istanbul, the blockages they encounter as resident tourists, the hotspots that the city offers, and the role of locative media in enriching the urban experience are the main axes to be evaluated. In the first step of the multi-staged research, we conduct an online qualitative survey with a sample; then, we evaluate the data obtained from the survey using cluster analysis to identify the urban experience, consumption habits, and tastes. In the final stage, digital ethnographic fieldwork will be carried out with representative personas identified by the cluster analysis. With this field research on the urban experience accompanied by locative media applications, suggestions will be developed by evaluating the opportunities these applications offer to enrich the urban practice of foreigners.

Keywords: digital ethnography, international students, locative media applications, urban experience

Procedia PDF Downloads 140
913 Effective Nutrition Label Use on Smartphones

Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu

Abstract:

Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.

Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 373
912 Integration of an Innovative Complementary Approach Inspired by Clinical Hypnosis into Oncology Care: Nurses’ Perception of Comfort Talk

Authors: Danny Hjeij, Karine Bilodeau, Caroline Arbour

Abstract:

Background: Chemotherapy infusions often lead to a cluster of co-occurring and difficult-to-treat symptoms (nausea, tingling, etc.), which may negatively impact the treatment experience at the outpatient clinic. Although several complementary approaches have shown beneficial effects for chemotherapy-induced symptom management, they are not easily implementable during chemotherapy infusion. In response to this limitation, comfort talk (CT), a simple, fast conversational method inspired by the language principles of clinical hypnosis, is known to optimize the management of symptoms related to antineoplastic treatments. However, the perception of nurses who have had to integrate this practice into their care has never been documented. Study design: A qualitative descriptive study with iterative content analysis was conducted among oncology nurses working in a chemotherapy outpatient clinic who had previous experience with CT. Semi-structured interviews were conducted by phone, using a pre-tested interview guide and a sociodemographic survey to document their perception of CT. The conceptual framework. Results: A total of six nurses (4 women, 2 men) took part in the interviews (N=6). The average age of participants was 49 years (36-61 years). Participants had an average of 24 years of experience (10-38 years) as a nurse, including 14.5 years in oncology (5-32 years). Data saturation (i.e., redundancy of words) was observed around the fifth interview. A sixth interview was conducted as confirmation. Six themes emerged: two addressing contextual and organizational obstacles at the chemotherapy outpatient clinic, and three addressing the added value of CT for oncology nursing care. Specific themes included: 1) the outpatient oncology clinic, a saturated care setting, 2) the keystones that support the integration of CT into care, 3) added value for patients, 4) a positive and rewarding experience for nurses, 5) collateral benefits, and 6) CT an approach to consider during the COVID-19 pandemic. Conclusion: For the first time, this study describes nurses' perception of the integration of CT into the care surrounding the administration of chemotherapy at the outpatient oncology clinic. In summary, contextual and organizational difficulties, as well as the lack of training, are among the main obstacles that could hinder the integration of CT in oncology. Still, the experience was reported mostly as positive. Indeed, nurses saw HC as an added value to patient care and meeting their need for holistic care. HC also appears to be beneficial for patients on several levels (for pain management in particular). Results will be used to inform future knowledge transfer activities related to CT in oncology nursing.

Keywords: cancer, chemotherapy, comfort talk, oncology nursing role

Procedia PDF Downloads 81
911 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 140
910 The Impact of Autonomous Driving on Cities of the Future: A Literature Review

Authors: Maximilian A. Richter

Abstract:

The public authority needs to understand the role and impacts of autonomous vehicle (AV) on the mobility system. At present, however, research shows that the impact of AV on cities varies. As a consequence, it is difficult to make recommendations to policymakers on how they should prepare for the future when so much remains unknown about this technology. The study aims to provide an overview of the literature on how autonomous vehicles will affect the cities and traffic of the future. To this purpose, the most important studies are first selected, and their results summarized. Further on, it will be clarified which advantages AV have for cities and how it can lead to an improvement in the current problems/challenges of cities. To achieve the research aim and objectives, this paper approaches a literature review. For this purpose, in a first step, the most important studies are extracted. This is limited to studies that are peer-reviewed and have been published in high-ranked journals such as the Journal of Transportation: Part A. In step 2, the most important key performance indicator (KPIs) (such as traffic volume or energy consumption) are selected from the literature research. Due to the fact that different terms are used in the literature for similar statements/KPIs, these must first be clustered. Furthermore, for each cluster, the changes from the respective studies are compiled, as well as their survey methodology. In step 3, a sensitivity analysis per cluster is made. Here, it will be analyzed how the different studies come to their findings and on which assumptions, scenarios, and methods these calculations are based. From the results of the sensitivity analysis, the success factors for the implementation of autonomous vehicles are drawn, and statements are made under which conditions AVs can be successful.

Keywords: autonomous vehicles, city of the future, literature review, traffic simulations

Procedia PDF Downloads 106
909 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 77
908 Phonological Characteristics of Severe to Profound Hearing Impaired Children

Authors: Akbar Darouie, Mamak Joulaie

Abstract:

In regard of phonological skills development importance and its influence on other aspects of language, this study has been performed. Determination of some phonological indexes in children with hearing impairment and comparison with hearing children was the objective. A sample of convenience was selected from a rehabilitation center and a kindergarten in Karaj, Iran. Participants consisted of 12 hearing impaired and 12 hearing children (age range: 5 years and 6 months to 6 years and 6 months old). Hearing impaired children suffered from severe to profound hearing loss while three of them were cochlear implanted and the others were wearing hearing aids. Conversational speech of these children was recorded and 50 first utterances were selected to analyze. Percentage of consonant correct (PCC) and vowel correct (PVC), initial and final consonant omission error, cluster consonant omission error and syllabic structure variety were compared in two groups. Data were analyzed with t test (version 16th SPSS). Comparison between PCC and PVC averages in two groups showed a significant difference (P< 0/01). There was a significant difference about final consonant emission error (P<0/001) and initial consonant emission error (P<0/01) too. Also, the differences between two groups on cluster consonant omission were significant (P<0/001). Therefore, some changes were seen in syllabic structures in children with hearing impairment compared to typical group. This study demonstrates some phonological differences in Farsi language between two groups of children. Therefore, it seems, in clinical practices we must notice this issue.

Keywords: hearing impairment, phonology, vowel, consonant

Procedia PDF Downloads 244
907 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity

Procedia PDF Downloads 302
906 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.

Keywords: clustering, k-mers, longest common subsequence, SOM

Procedia PDF Downloads 267
905 Review of Consecutive Patients Treated with a Combination of Vancomycin and Rifaximin for Diarrhea Predominant Irritable Bowel Syndrome (IBS-D)

Authors: Portia Murphy, Danica Vasic, Anoja W. Gunaratne, Encarnita Sitchon, Teresita Tugonon, Marou Ison, Antoinette Le Busque, Christelle Pagonis, Thomas J. Borody

Abstract:

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that affects an estimated 11% of the population globally with the most predominant symptoms being abdominal pain, bloating and altered bowel movements. All age groups suffer from IBS although the prevalence of IBS decreases for age groups over 50 years. Women are more likely to suffer from IBS than men. IBS can be categorized into 3 groups based on the type of altered bowel movement: diarrhea-predominant IBS (IBS-D), constipation-predominant IBS (IBS-C) and IBS with mixed bowel habit (IBS-M). The contribution of the gut microbiome to the etiology of IBS is becoming increasingly recognized with rising use of anti-microbial agents. Previous studies on vancomycin and rifaximin used as monotherapy or in combination have been conducted mainly on IBS-C and showed marked improvements in the symptoms. According to our knowledge, no studies reported using these two combinations of antibiotics for IBS-D. Here, we report a consecutive cohort of 18 patients treated with both vancomycin and rifaximin for IBS-D. These patients’ records were reviewed retrospectively. In this cohort, patients ages were between 24-74 years (mean 44 years) and 9 were female. Baseline all patients had diarrhea, 4 with mucus and one with blood. Patients reported other symptoms were abdominal pain (n=11) bloating (n=9), flatulence (n=7), fatigue (n=4) and nausea (n=3). Patients treatments were personalized according to their symptom severity and tolerability and were treated with combination of rifaximin (500 - 3000mg/d) and vancomycin (500mg - 1500mg/d) for an ongoing period. Follow-ups were conducted between 2-32 weeks’ time. Of all patients, 89% patients reported improvement of the symptoms, 1 reported no change and 1 patient’s symptoms got worse. The mechanism of action for both vancomycin and rifaximin involves the inhibition of bacterial cell wall and protein synthesis respectively. The role of these medications in improving the symptoms of this cohort suggests that IBS-D may be microbiome infection driven. In this cohort, similar patient presentations to Clostridium difficile, as well as symptom improvement with the use of rifaximin and particularly vancomycin, suggest that the infectious agent may be an unidentified Clostridium. These preliminary results offer an alternative etiology for IBS-D not previously considered and open the avenue for new research.

Keywords: clostridium deficile, diarrhea predominant Irritable Bowel Syndrome, microbiome, vancomycin/rifaximin combination

Procedia PDF Downloads 130
904 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits

Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi

Abstract:

Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.

Keywords: blast resistant, diversity analysis, heritability, upland rice

Procedia PDF Downloads 369
903 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease

Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul

Abstract:

Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.

Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression

Procedia PDF Downloads 448
902 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 393
901 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness

Authors: Marit D. Murry, Amy K. Marks

Abstract:

The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.

Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience

Procedia PDF Downloads 110
900 Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Authors: Gurkirat Kaur, Manoj Kumar, Manju Bala

Abstract:

Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput.

Keywords: ethernet, InfiniBand, RoCE, RDMA, MPI, Soft RoCE

Procedia PDF Downloads 464
899 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.

Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics

Procedia PDF Downloads 166
898 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms

Authors: İsmail Ay

Abstract:

In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.

Keywords: psychological symptoms, need for psychological help, structural equation model, correlation

Procedia PDF Downloads 368
897 Genomic and Proteomic Variation in Glycine Max Genotypes towards Salinity

Authors: Faheema Khan

Abstract:

In order to investigate the influence of genetic background on salt tolerance in Soybean (Glycine max) ten soybean genotypes released/notified in India were selected. (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712). The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and RAPD analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes however the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted for by plant physiological measures. The genetic polymorphisms between soybean genotypes differing in response to salt stress were characterized using 25 RAPD primers. These primers generated a total of 1640 amplification products, among which 1615 were found to be polymorphic. A very high degree of polymorphism (98.30%) was observed. UPGMA cluster analysis of genetic similarity indices grouped all the genotypes into two major clusters. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings. Our results show that RAPD technique is a sensitive, precise and efficient tool for genomic analysis in soybean genotypes.

Keywords: glycine max, NaCl, RAPD, proteomics

Procedia PDF Downloads 585
896 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 246
895 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 230
894 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
893 Barriers to Tuberculosis Detection in Portuguese Prisons

Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte

Abstract:

Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.

Keywords: barriers, health care professionals, prisons, protocol, tuberculosis

Procedia PDF Downloads 146