Search results for: structural method
21798 Characterization Techniques for Studying Properties of Nanomaterials
Authors: Nandini Sharma
Abstract:
Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.Keywords: characterization, structural, optical, nanomaterial
Procedia PDF Downloads 14621797 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 11621796 An Integrated Framework for Seismic Risk Mitigation Decision Making
Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani
Abstract:
One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.Keywords: decision making, demolition, construction management, seismic retrofit
Procedia PDF Downloads 23821795 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion
Authors: M. Yoneda
Abstract:
It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.Keywords: dynamic interaction, footbridge, stationary people, structural damping
Procedia PDF Downloads 27421794 The Role of the Stud’s Configuration in the Structural Response of Composite Bridges
Authors: Mohammad Mahdi Mohammadi Dehnavi, Alessandra De Angelis, Maria Rosaria Pecce
Abstract:
This paper deals with the role of studs in the structural response of steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength on the global response (ductility and strength) of the structures but also to analyze the trend of slip and shear at interface along the beams.Keywords: stud connectors, finite element method, slip, shear load, steel-concrete composite bridge
Procedia PDF Downloads 15321793 Struggles of Non-Binary People in an Organizational Setting in Iceland
Authors: Kevin Henry
Abstract:
Introduction: This research identifies the main struggles of non-binary people in an organizational setting using the ZMET – method of in-depth interviews. The research was done in Iceland, a country that is repeatedly listed in the top countries for gender equality and found three main categories of non-binary struggles in organizations. These categories can be used to improve organizational non-binary inclusion. Aim: The main questions this paper will answer are: Which unique obstacles are non-binary people facing in their daily organizational life? Which organizational and individual measures help with more inclusion of non-binary people? How can organizational gender equality measures be made more inclusive of non-binary issues? Background: Even though gender equality is a much-researched topic, the struggles of non-binary people are often overlooked in gender equality research. Additionally, non-binary and transgender people are frequently researched together, even though their struggles can be very different. Research focused on non-binary people is, in many cases, done on a more structural or organizational level with quantitative data such as salary or position within an organization. This research focuses on the individual and their struggles with qualitative data to derive measures for non-binary inclusion and equality. Method: An adapted approach of the ZMET-Method (Zaltman Metaphor Elicitation Technique) will be used, during which in-depth interviews are held with individuals, utilizing pictures as a metaphorical starting point to discuss their main thoughts and feelings on being non-binary in an organizational setting. Interviewees prepared five pictures, each representing one key thought or feeling about their organizational life. The interviewer then lets the interviewee describe each picture and asks probing questions to get a deeper understanding of each individual topic. This method helps with a mostly unbiased data collection process by only asking probing questions during the interview and not leading the interviewee in any certain direction. Results: This research has identified three main categories of struggles non-binary people are facing in an organizational setting: internal (personal) struggles, external struggles and structural struggles. Internal struggles refer to struggles that originate from the person themselves (e.g., struggles with their own identity). External struggles refer to struggles from the outside (e.g. harassment from coworkers, exclusion). Structural struggles refer to struggles that are built into the organizational policy or facilities (e.g. restrooms, gendered language). Conclusion: This study shows that there are many struggles for non-binary people in organizations and that even in countries that pride themselves on being progressive and having a high level of gender equality, there is still much to be done for non-binary inclusion. Implications for Organizations: Organizations that strive to improve the inclusion of all genders should pay attention to how their structures are built, how their training is conducted, and how their policies affect people of various genders. Simple changes like making restrooms gender-neutral and using neutral language in company communications are good examples of small structural steps for more inclusion.Keywords: gender equality, non-binary, organizations, ZMET
Procedia PDF Downloads 4521792 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE
Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir
Abstract:
The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment
Procedia PDF Downloads 45921791 Optimization of the Structural Design for an Irregular Building in High Seismicity Zone
Authors: Arias Fernando, Juan Bojórquez, Edén Bojórquez, Alfredo Reyes-Salazar, Fernando de J. Velarde, Robespierre Chávez, J. Martin Leal, Victor Baca
Abstract:
The present study focuses on the optimization of different structural systems employed in tall steel buildings, with a specific focus on the city of Acapulco, Guerrero, a region known for its high seismic activity. Using the spectral modal method, analyses were conducted to assess the ability of these buildings to withstand seismic forces and other external loads. After performing a detailed analysis of various models, the results were compared based on various engineering parameters, including maximum interstory drift, base shear, displacements, and the total weight of the structures, the latter being considered as an estimate of the cost of the proposed systems. The findings of this study indicate that steel frames stand out as a viable option for tall buildings in question. However, areas of potential improvement were identified, suggesting opportunities for further optimization of the design and seismic resistance of these structures. This study provides a deep and insightful perspective on the optimization of structural systems in tall steel buildings, offering valuable information for engineers and professionals in the field involved in similar projects.Keywords: high seismic zone, irregular buildings, optimization design, steel buildings
Procedia PDF Downloads 2421790 Post-Structural Study of Gender in Shakespearean Othello from Butlerian Perspective
Authors: Muhammad Shakeel Rehman Hissam
Abstract:
This study aims at analyzing gender in Othello by applying Judith Butler’s Post-Structural theory of gender and gender performance. The analysis of the play provides us context by which we can examine what kinds of effects the drama have on understanding of the researchers regarding gender identity. The study sets out to examine that, is there any evidence or ground in Shakespearean selected work which leads to challenge the patriarchal taken for granted prescribed roles of gender? This would be the focal point in study of Othello that actions and performances of characters determine their gender identity rather than their sexuality. It argues that gender of Shakespearean characters has no constant, fixed and structural impression. On the contrary, they undergo consistent variations in their behavior and performance which impart fluidity and volatility to them. The focal point of the present study is Butler’s prominent work; Gender Trouble: Feminism and subversion of Identity and her post structural theory of Gender performativity as the theoretical underpinning of the text. It analyzes the selected play in Post-Structural gender perspective. The gender-centric plot of the play is riddled with fluidity of gender. The most fascinating aspect of the play is the transformations of genders on the basis of performances by different characters and through these transformations; gender identity is revealed and determined. The study reconstructs the accepted gender norms by challenging the traditional concept of gender that is based on sexual differences of characters.Keywords: post structural, gender, performativity, socio-cultural gender norms, binaries, Othello, Butler, identity
Procedia PDF Downloads 37221789 Applying Element Free Galerkin Method on Beam and Plate
Authors: Mahdad M’hamed, Belaidi Idir
Abstract:
This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate holeKeywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods
Procedia PDF Downloads 28321788 Differentiation of Customer Types by Stereotypical Characteristics for Modular and Conventional Construction Methods
Authors: Peter Schnell, Phillip Haag
Abstract:
In the course of the structural transformation of the construction industry, the integration of industrialization and digitization has led to the development of construction methods with an increased degree of prefabrication, such as system or modular construction. Compared to conventional construction, these innovative construction methods are characterized by modified structural and procedural properties and expand the range of construction services. Faced with the supply side, it is possible to identify construction-specific customer types with different characteristics and certain preferences as far as the choice of construction method is concerned. The basis for this finding was qualitative expert interviews. By evaluating the stereotypical customer needs, a corresponding segmentation of the demand side can be made along with the basic orientation and decision behavior. This demarcation supports the target- and needs-oriented customer approach and contributes to cooperative and successful project management.Keywords: differentiation of customer types, modular construction methods, conventional construction methods, stereotypical customer types
Procedia PDF Downloads 11021787 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong
Abstract:
Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure
Procedia PDF Downloads 24021786 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)
Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula
Abstract:
This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.Keywords: MINLP, mixed-integer non-linear programming, optimization, structures
Procedia PDF Downloads 4621785 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys
Authors: Surjit Angra, Pooja Rani, Vinod Kumar
Abstract:
In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.Keywords: hydro-turbine, spiral casing, stay ring, structural analysis
Procedia PDF Downloads 51621784 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA).Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates
Procedia PDF Downloads 33321783 First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites
Authors: Amel Souidi, S. Bentata, B. Bouadjemi, T. Lantri, Z. Aziz
Abstract:
Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology.Keywords: double perovskites, electronic structure, first-principles, semiconductors
Procedia PDF Downloads 36821782 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation
Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi
Abstract:
For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.Keywords: cavitation, flaps, hydrofoil, panel method, xfoil
Procedia PDF Downloads 17621781 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite
Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain
Abstract:
The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power
Procedia PDF Downloads 16021780 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam
Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir
Abstract:
Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory
Procedia PDF Downloads 31821779 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors: H. Katkhuda
Abstract:
A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.Keywords: dynamic force identification, dynamic responses, sub-structure, time domain
Procedia PDF Downloads 36121778 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load
Procedia PDF Downloads 41421777 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds
Authors: Meriem Harmel, Houari Khachai
Abstract:
The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.Keywords: DFT, matlockite, structural properties, electronic structure
Procedia PDF Downloads 32421776 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties
Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio
Abstract:
Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties
Procedia PDF Downloads 19521775 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya
Authors: James Kinyua Gitonga, Toshio Fujimi
Abstract:
Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability
Procedia PDF Downloads 23921774 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 29521773 Experımental Study of Structural Insulated Panel under Lateral Load
Abstract:
A Structural Insulated Panel (SIP) is a structural element contains of foam insulation core sandwiched between two oriented-strand boards (OSB), plywood boards, steel sheets or fibre cement boards. Superior insulation, exceptional strength and fast insulation are the specifications of a SIP-based structure. There are also many other benefits such as less total construction costs, speed of construction, less expensive HVAC equipment required, favourable energy-efficient mortgages comparing to wood-framed houses. This paper presents the experimental analysis on selected foam-timber SIPs to study their structural behaviour when used as walls in residential construction under lateral loading. The experimental program has also taken several stud panels in order to compare the performance of SIP with conventional wood-frame system. The results of lateral tests performed in this study established a database that can be used further to develop design tables of SIP wall subjected to lateral loading caused by wind or earthquake. A design table for walls subjected to lateral loading was developed. Experimental results proved that the tested SIPs are ‘as good as’ the conventional wood-frame system.Keywords: structural insulated panel, experimental study, lateral load, design tables
Procedia PDF Downloads 31621772 An Investigation into the Effects of Anxiety Sensitivity in Adolescents on Anxiety Disorder and Childhood Depression
Authors: Ismail Seçer
Abstract:
The purpose of this study is to investigate the effects of anxiety sensitivity in adolescents on anxiety disorder and childhood depression. Mood disorders and anxiety disorders in children and adolescents can be given examples of important research topics in recent years. The participants of the study consist of 670 students in Erzurum and Erzincan city centers. The participants of the study were 670 secondary and high school students studying in city centers of Erzurum and Erzincan. The participants were chosen based on convenience sampling. The participants were between the ages of 13 and 18 (M=15.7, Ss= 1.35) and 355 were male and 315 were female. The data were collected through Anxiety Sensitivity Index and Anxiety and Depression Index for Children and Adolescents. For data analysis, Correlation analysis and Structural Equation Model were used. In this study, correlational descriptive survey was used. This model enables the researcher to make predictions related to different variables based on the information obtained from one or more variables. Therefore, the purpose is to make predictions considering anxiety disorder and childhood depression based on anxiety sensitivity. For this purpose, latent variable and structural equation model was used. Structural equation model is an analysis method which enables the identification of direct and indirect effects by determining the relationship between observable and latent variables and testing their effects on a single model. CFI, RMR, RMSEA and SRMR, which are commonly accepted fit indices in structural equation model, were used. The results revealed that anxiety sensitivity impacts anxiety disorder and childhood depression through direct and indirect effects in a positive way. The results are discussed in line with the relevant literature. This finding can be considered that anxiety sensitivity can be a significant risk source in terms of children's and adolescents’ anxiety disorder experience. This finding is consistent with relevant research highlighting that in case the anxiety sensitivity increases then the obsessive compulsive disorder and panic attack increase too. The adolescents’ experience of anxiety can be attributed to anxiety sensitivity.Keywords: anxiety sensitivity, anxiety, depression, structural equation
Procedia PDF Downloads 29721771 Optimization of Steel Moment Frame Structures Using Genetic Algorithm
Authors: Mohammad Befkin, Alireza Momtaz
Abstract:
Structural design is the challenging aspect of every project due to limitations in dimensions, functionality of the structure, and more importantly, the allocated budget for construction. This research study aims to investigate the optimized design for three steel moment frame buildings with different number of stories using genetic algorithm code. The number and length of spans, and height of each floor were constant in all three buildings. The design of structures are carried out according to AISC code within the provisions of plastic design with allowable stress values. Genetic code for optimization is produced using MATLAB program, while buildings modeled in Opensees program and connected to the MATLAB code to perform iterations in optimization steps. In the end designs resulted from genetic algorithm code were compared with the analysis of buildings in ETABS program. The results demonstrated that suggested structural elements by the code utilize their full capacity, indicating the desirable efficiency of produced code.Keywords: genetic algorithm, structural analysis, steel moment frame, structural design
Procedia PDF Downloads 11821770 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks
Authors: Amira Zrelli, Tahar Ezzedine
Abstract:
Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.Keywords: CTP, WSN, SHM, routing protocol
Procedia PDF Downloads 29621769 PM Electrical Machines Diagnostic: Methods Selected
Authors: M. Barański
Abstract:
This paper presents a several diagnostic methods designed to electrical machines especially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives. Those methods are preferred by the author in periodic diagnostic of electrical machines. The special attention should be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methods were created in Institute of Electrical Drives and Machines Komel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.Keywords: electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to-traction drive, turn insulation, vibrations
Procedia PDF Downloads 402