Search results for: predictive functional control
13886 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills
Authors: Theresa Marie Miller, Ma. Nympha Joaquin
Abstract:
The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement
Procedia PDF Downloads 31513885 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract
Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna
Abstract:
In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.Keywords: barley, functional foods, olive leaf, polyphenols, shelf life
Procedia PDF Downloads 30713884 Proximate, Functional and Sensory Evaluation of Some Brands of Instant Noodles in Nigeria
Authors: Olakunle Moses Makanjuola, Adebola Ajayi
Abstract:
Noodles are made from unleavened dough, rolled flat and cut into shapes. The instant noodle market is growing fast in Asian countries and is gaining popularity in the western market. This project reports on the proximate functional and sensory evaluation of different brands of instant noodles in Nigeria. The comparisons were based on proximate functional and sensory evaluation of the product. The result obtained from the proximate analysis showed that sample QHR has the highest moisture content, sample BMG has the highest protein content, sample CPO has the highest fat content, sample. The obtained result from the functional properties showed that sample BMG (Dangote noodles) had the highest volume increase after cooking due to its high swelling capacity, high water absorption capacity and high hydration capacity. Sample sensory analysis of the noodles showed that all the samples are of significant difference (at P < 0.05) in terms of colour, texture, and aroma but there is no significant difference in terms of taste and overall acceptability. Sample QHR (Indomie noodles) is the most preferred by the panelists.Keywords: proximate, functional, sensory evaluation, noodles
Procedia PDF Downloads 25713883 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21613882 Automotive Quality Engineering: A Roadmap for Functional Safety
Authors: Hugo d’Albert, Udo Lindemann
Abstract:
The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future.Keywords: automotive systems, functional safety, quality engineering, quality management
Procedia PDF Downloads 31513881 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 27613880 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 52113879 Fuzzy Control and Pertinence Functions
Authors: Luiz F. J. Maia
Abstract:
This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions
Procedia PDF Downloads 45213878 Trauma Scores and Outcome Prediction After Chest Trauma
Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag
Abstract:
Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries
Procedia PDF Downloads 42213877 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food
Authors: Surbhi Rani, Sunita Gakkhar
Abstract:
The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations
Procedia PDF Downloads 11313876 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 55613875 Novel Formal Verification Based Coverage Augmentation Technique
Authors: Surinder Sood, Debajyoti Mukherjee
Abstract:
Formal verification techniques have become widely popular in pre-silicon verification as an alternate to constrain random simulation based techniques. This paper proposed a novel formal verification-based coverage augmentation technique in verifying complex RTL functional verification faster. The proposed approach relies on augmenting coverage analysis coming from simulation and formal verification. Besides this, the functional qualification framework not only helps in improving the coverage at a faster pace but also aids in maturing and qualifying the formal verification infrastructure. The proposed technique has helped to achieve faster verification sign-off, resulting in faster time-to-market. The design picked had a complex control and data path and had many configurable options to meet multiple specification needs. The flow is generic, and tool independent, thereby leveraging across the projects and design will be much easierKeywords: COI (cone of influence), coverage, formal verification, fault injection
Procedia PDF Downloads 12913874 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability
Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad
Abstract:
Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor
Procedia PDF Downloads 22413873 Effect of Different Processing Methods on the Proximate, Functional, Sensory, and Nutritional Properties of Weaning Foods Formulated from Maize (Zea mays) and Soybean (Glycine max) Flour Blends
Authors: C. O. Agu, C. C. Okafor
Abstract:
Maize and soybean flours were produced using different methods of processing which include fermentation (FWF), roasting (RWF) and malting (MWF). Products from the different methods were mixed in the ratio 60:40 maize/soybean, respectively. These composites mixed with other ingredients such as sugar, vegetable oil, vanilla flavour and vitamin mix were analyzed for proximate composition, physical/functional, sensory and nutritional properties. The results for the protein content ranged between 6.25% and 16.65% with sample RWF having the highest value. Crude fibre values ranged from 3.72 to 10.0%, carbohydrate from 58.98% to 64.2%, ash from 1.27 to 2.45%. Physical and functional properties such as bulk density, wettability, gelation capacity have values between 0.74 and 0.76g/ml, 20.33 and 46.33 min and 0.73 to 0.93g/ml, respectively. On the sensory quality colour, flavour, taste, texture and general acceptability were determined. In terms of colour and flavour there was no significant difference (P < 0.05) while the values for taste ranged between 4.89 and 7.1 l, texture 5.50 to 8.38 and general acceptability 6.09 and 7.89. Nutritionally there is no significant difference (P < 0.05) between sample RWF and the control in all parameters considered. Samples FWF and MWF showed significantly (P < 0.5) lower values in all parameters determined. In the light of the above findings, roasting method is highly recommend in the production of weaning foods.Keywords: fermentation, malting, ratio, roasting, wettability
Procedia PDF Downloads 30613872 Predictive Maintenance Based on Oil Analysis Applicable to Transportation Fleets
Authors: Israel Ibarra Solis, Juan Carlos Rodriguez Sierra, Ma. del Carmen Salazar Hernandez, Isis Rodriguez Sanchez, David Perez Guerrero
Abstract:
At the present paper we try to explain the analysis techniques use for the lubricating oil in a maintenance period of a city bus (Mercedes Benz Boxer 40), which is call ‘R-24 route’, line Coecillo Centro SA de CV in Leon Guanajuato, to estimate the optimal time for the oil change. Using devices such as the rotational viscometer and the atomic absorption spectrometer, they can detect the incipient form when the oil loses its lubricating properties and, therefore, cannot protect the mechanical components of diesel engines such these trucks. Timely detection of lost property in the oil, it allows us taking preventive plan maintenance for the fleet.Keywords: atomic absorption spectrometry, maintenance, predictive velocity rate, lubricating oils
Procedia PDF Downloads 57213871 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 10813870 Did Nature of Job Matters - Impact of Perceived Job Autonomy on Turnover Intention in Sales and Marketing Managers: Moderating Effect of Procedural and Distributive Justice
Authors: Muhammad Babar Shahzad
Abstract:
The purpose of our study is to investigate the relationship between perceived job autonomy and turnover intention in sales & marketing staff. Perceived job autonomy is considered one of most studied dimension of Job Characteristic Model. But still there is a confusion in scholars about predictive role of perceived job autonomy in turnover intention. In line of more complex research on this relation, we investigated the relationship between perceived job autonomy and turnover intention. Did nature of job have any impact on this relationship. On the call of different authors we take interactive effect of perceived job autonomy and procedural justice on turnover intention. Predictive role of distributive justice to employee outcomes is not deniable. But predictive role of distributive justice will be prone in different contextual influences. Interactive role of distributive justice and perceived job autonomy is also not tested before. We collected date from 279 marketing and sales managers working in financial institution, FMCG industries, Pharamesutical Industry & Bank. Strong and direct negative relation was found in perceived job autonomy, distributive justice & procedural justice on turnover intention. Distributive and procedural justice is also amplifying the negative relationship of perceived job autonomy and turnover intention. Limitation and future direction for research is also discussed.Keywords: perceived job autonomy, turnover intention, procedural justice, distributive job
Procedia PDF Downloads 51313869 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 5613868 The Effect of Physical and Functional Structure on Citizens` Social Behavior: Case Study of Valiasr Crossroads, Tehran, Iran
Authors: Seyedeh Samaneh Hosseini Yousefi
Abstract:
Space does not play role just in mentioning the place or locations. It also takes part in people attendance and social structures. Urban space is of substantial aspects of city which is a public sphere for free and unlimited appearance of citizens. Along with such appearances and regarding physical, environmental and functional conditions, different personal and social behaviors can be seen and analyzed toward people. The main principle of an urban space is including social relations and communications. In this survey, urban space has been referred to one in which physical, environmental and functional attractions cause pause and staying of people. Surveys have shown that urban designers have discussed about place more than architects or planners. With attention to mutual relations between urban space, society and civilization, proper policy making and planning are essential due to achieving an ideal urban space. The survey has been decided to analyze the effect of functional and physical structure of urban spaces on citizens' social behaviors. Hence, Valiasr crossroads, Tehran identified public space, has been selected in which analytic-descriptive method utilized. To test the accuracy of assumptions, statistical test has been accomplished by SPSS. Findings have shown that functional structure affects social behaviors, relations, integration and participation more than physical structure does.Keywords: citizens' social behavior, functional structure, physical structure, urban space
Procedia PDF Downloads 50513867 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 17613866 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant
Authors: Khaing Yadana Swe, Lillie Dewan
Abstract:
At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.Keywords: model-free adaptive control, cascade control, adaptive control, PID
Procedia PDF Downloads 60513865 Predictive Modelling Approaches in Food Processing and Safety
Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary
Abstract:
Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.Keywords: predictive modlleing, ann, ai, food
Procedia PDF Downloads 8413864 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38913863 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle
Authors: Nilay K. Doshi
Abstract:
A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance
Procedia PDF Downloads 33413862 Enhancing Neural Connections through Music and tDCS: Insights from an fNIRS Study
Authors: Dileep G., Akash Singh, Dalchand Ahirwar, Arkadeep Ghosh, Ashutosh Purohit, Gaurav Guleria, Kshatriya Om Prashant, Pushkar Patel, Saksham Kumar, Vanshaj Nathani, Vikas Dangi, Shubhajit Roy Chowdhury, Varun Dutt
Abstract:
Transcranial direct current stimulation (tDCS) has shown promise as a novel approach to enhance cognitive performance and provide therapeutic benefits for various brain disorders. However, the exact underlying brain mechanisms are not fully understood. We conducted a study to examine the brain's functional changes when subjected to simultaneous tDCS and music (Indian classical raga). During the study, participants in the experimental group underwent a 20-minute session of tDCS at two mA while listening to music (raga) for a duration of seven days. In contrast, the control group received a sham stimulation for two minutes at two mA over the same seven-day period. The objective was to examine whether repetitive tDCS could lead to the formation of additional functional connections between the medial prefrontal cortex (the stimulated area) and the auditory cortex in comparison to a sham stimulation group. In this study, 26 participants (5 female) underwent pre- and post-intervention scans, where changes were compared after one week of either tDCS or sham stimulation in conjunction with music. The study revealed significant effects of tDCS on functional connectivity between the stimulated area and the auditory cortex. The combination of tDCS applied over the mPFC and music resulted in newly formed connections. Based on our findings, it can be inferred that applying anodal tDCS over the mPFC enhances functional connectivity between the stimulated area and the auditory cortex when compared to the effects observed with sham stimulation.Keywords: fNIRS, tDCS, neuroplasticity, music
Procedia PDF Downloads 7413861 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method
Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam
Abstract:
Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty
Procedia PDF Downloads 55913860 Internal Audit and the Effectiveness and Efficiency of Operations in Hospitals
Authors: Naziru Suleiman
Abstract:
The ever increasing cases of financial frauds and corporate accounting scandals in recent years have raised more concern on the operation of internal control mechanisms and performance of the internal audit departments in organizations. In most cases the seeming presence of both the internal control system and internal audit in organizations do not prove useful as frauds errors and irregularities are being perpetuated. The aim of this study, therefore, is to assess the role of internal audit in achieving the objectives of internal control system of federal hospitals in Kano State from the perception of the respondents. The study used survey research design and generated data from primary source by means of questionnaire. A total number of 100 copies of questionnaire were administered out of which 68 were duly completed and returned. Cronbach’s alpha was used to test the internal validity of the various items in the constructs. Descriptive statistics, chi-square test, Mann Whitney U test and Kruskal Wallis ANOVA were employed for the analysis of data. The study finds that from the perception of the respondents, internal audit departments in Federal Hospitals in Kano State are effective and that they contribute positively to the overall attainment of the objectives of internal control system of these hospitals. There is no significant difference found on the views of the respondents from the three hospitals. Hence, the study concludes that strong and functional internal audit department is a basic requirement for effectiveness of operations of the internal control system. In the light of the findings, it is recommended that internal audit should continue to ensure that the objectives of internal control system of these hospitals are achieved through proper and adequate evaluation and review of the system.Keywords: internal audit, internal control, federal hospitals, financial frauds
Procedia PDF Downloads 35513859 Design of an Electric Arc Furnace for the Production of Metallurgical Grade Silicon
Authors: M. Barbouche, M. Hajji, H. Ezzaouia
Abstract:
This project is a step to manufacture solar grade silicon. It consists in designing an electrical arc furnace in order to produce metallurgical silicon Mg-Si with mutually carbon and high purity of silica. It concerns, first, the development of a functional analysis, a mechanical design and thermodynamic study. Our study covers also, the design of the temperature control system and the design of the electric diagrams. The furnace works correctly. A Labview interface was developed to control all parameters and to supervise the operation of furnace. Characterization tests with X-ray technique and Raman spectroscopy allow us to confirm the metallurgical silicon production.Keywords: arc furnace, electrical design, silicon manufacturing, regulation, x-ray characterization
Procedia PDF Downloads 49913858 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties
Authors: Alia Abdul Ghaffar, Tom Richardson
Abstract:
A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive control, unlike a fixed gain control, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture results in an enhanced tracking performance in the presence of parametric uncertainties.Keywords: UAV, quadrotor, robotic arm augmentation, model reference adaptive control, LQR control
Procedia PDF Downloads 47513857 Physico-Chemical Characteristics of Terminalia arjuna Encapsulated Dairy Drink
Authors: Sawale Pravin Digambar, G. R. Patil, Shaik Abdul Hussain
Abstract:
Terminalia arjuna (TA), an important medicinal plant in Indian System of Medicine, is specifically recognized for its recuperative effect on heart ailments. Alcoholic extract of TA (both free and encapsulated) was incorporated into milk to obtain functional dairy beverages. The respective beverages were appropriately flavored and optimized using response surface methodology to improve the sensory appeal. The beverages were evaluated for their compositional, anti-oxidative and various other physico-chemical aspects. Addition of herb (0.3%) extract to flavoured dairy drink (Drink 1) resulted in significantly lowered (p>0.05) HMF content and increased antioxidant activity, total phenol content as compared with control (Control 1). Subsequently, a significant (p>0.05) increase in acidity and sedimentation was also observed. Encapsulated herb (1.8%) incorporated drink (Drink 2) had significantly (P>0.05) enhanced HMF value and decreased antioxidant activity, phenol content as compared to herb added vanilla chocolate dairy drink (Drink 1). It can be concluded that addition of encapsulated TA extract and non-encapsulated TA extract to chocolate dairy drink at 0.3% concentration altered the functional properties vanilla chocolate dairy drink which could be related to the interaction of herb components such as polyphenol with milk protein or maltodextrin/ gum Arabic matrix.Keywords: Terminalia arjuna, encapsulate, antioxidant activity, physicochemical study
Procedia PDF Downloads 365