Search results for: network monitoring
7273 Optimisation of the Hydrometeorological-Hydrometric Network: A Case Study in Greece
Authors: E. Baltas, E. Feloni, G. Bariamis
Abstract:
The operation of a network of hydrometeorological-hydrometric stations is basic infrastructure for the management of water resources, as well as, for flood protection. The assessment of water resources potential led to the necessity of adoption management practices including a multi-criteria analysis for the optimum design of the region’s station network. This research work aims at the optimisation of a new/existing network, using GIS methods. The planning of optimum network stations is based on the guidelines of international organizations such as World Meteorological Organization (WMO). The uniform spatial distribution of the stations, the drainage basin for the hydrometric stations and criteria concerning the low terrain slope, the accessibility to the stations and proximity to hydrological interest sites, were taken into consideration for its development. The abovementioned methodology has been implemented for two different areas the Florina municipality and the Argolis area in Greece, and comparison of the results has been conducted.Keywords: GIS, hydrometeorological, hydrometric, network, optimisation
Procedia PDF Downloads 2877272 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1567271 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 907270 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis
Authors: Robert Saputra, Tomas Havlicek
Abstract:
This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance
Procedia PDF Downloads 147269 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET
Procedia PDF Downloads 4227268 A Performance Model for Designing Network in Reverse Logistic
Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi
Abstract:
In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.Keywords: reverse logistics, network design, performance model, open loop configuration
Procedia PDF Downloads 4357267 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 927266 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring
Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh
Abstract:
As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention
Procedia PDF Downloads 577265 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 3197264 Preference Heterogeneity as a Positive Rather Than Negative Factor towards Acceptable Monitoring Schemes: Co-Management of Artisanal Fishing Communities in Vietnam
Authors: Chi Nguyen Thi Quynh, Steven Schilizzi, Atakelty Hailu, Sayed Iftekhar
Abstract:
Territorial Use Rights for Fisheries (TURFs) have been emerged as a promising tool for fisheries conservation and management. However, illegal fishing has undermined the effectiveness of TURFs, profoundly degrading global fish stocks and marine ecosystems. Conservation and management of fisheries, therefore, largely depends on effectiveness of enforcing fishing regulations, which needs co-enforcement by fishers. However, fishers tend to resist monitoring participation, as their views towards monitoring scheme design has not been received adequate attention. Fishers’ acceptability of a monitoring scheme is likely to be achieved if there is a mechanism allowing fishers to engage in the early planning and design stages. This study carried out a choice experiment with 396 fishers in Vietnam to elicit fishers’ preferences for monitoring scheme and to estimate the relative importance that fishers place on the key design elements. Preference heterogeneity was investigated using a Scale-Adjusted Latent Class Model that accounts for both preference and scale variance. Welfare changes associated with the proposed monitoring schemes were also examined. It is found that there are five distinct preference classes, suggesting that there is no one-size-fits-all scheme well-suited to all fishers. Although fishers prefer to be compensated more for their participation, compensation is not a driving element affecting fishers’ choice. Most fishers place higher value on other elements, such as institutional arrangements and monitoring capacity. Fishers’ preferences are driven by their socio-demographic and psychological characteristics. Understanding of how changes in design elements’ levels affect the participation of fishers could provide policy makers with insights useful for monitoring scheme designs tailored to the needs of different fisher classes.Keywords: Design of monitoring scheme, Enforcement, Heterogeneity, Illegal Fishing, Territorial Use Rights for Fisheries
Procedia PDF Downloads 3247263 A Study of Traffic Assignment Algorithms
Authors: Abdelfetah Laouzai, Rachid Ouafi
Abstract:
In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.Keywords: network traffic, travel decisions, approaches, traffic assignment, flows
Procedia PDF Downloads 4747262 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6437261 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things
Authors: Liang Zhao, Guangwen Wang, Guichang Liu
Abstract:
Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring
Procedia PDF Downloads 1477260 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring
Authors: Goran Begović
Abstract:
In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.Keywords: data science, ECG, heart rate, holter monitor, LED sensors
Procedia PDF Downloads 1267259 Impact of Digitized Monitoring & Evaluation System in Technical Vocational Education and Training
Authors: Abdul Ghani Rajput
Abstract:
Although monitoring and evaluation concept adopted by Technical Vocational Education and Training (TVET) organization to track the progress over the continuous interval of time based on planned interventions and subsequently, evaluating it for the impact, quality assurance and sustainability. In digital world, TVET providers are giving preference to have real time information to do monitoring of training activities. Identifying the benefits and challenges of digitized monitoring & evaluation real time information system has not been sufficiently tackled in this date. This research paper looks at the impact of digitized M&E in TVET sector by analyzing two case studies and describe the benefits and challenges of using digitized M&E system. Finally, digitized M&E have been identified as carriers for high potential of TVET sector.Keywords: digitized M&E, innovation, quality assurance, TVET
Procedia PDF Downloads 2307258 Science and Monitoring Underpinning River Restoration: A Case Study
Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper
Abstract:
The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.Keywords: community engagement, ecological monitoring, river restoration, water quality
Procedia PDF Downloads 2317257 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 1457256 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements
Procedia PDF Downloads 5377255 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 1917254 Mobile Number Portability
Authors: R. Geetha, J. Arunkumar, P. Gopal, D. Loganathan, K. Pavithra, C. Vikashini
Abstract:
Mobile Number Portability is an attempt to switch over from one network to another network facility for mobile based on applications. This facility is currently not available for mobile handsets. This application is intended to assist the mobile network and its service customers in understanding the criteria; this will serve as a universal set of requirements which must be met by the customers. This application helps the user's network portability. Accessing permission from the network provider to enable services to the user and utilizing the available network signals. It is enabling the user to make a temporary switch over to other network. The main aim of this research work is to adapt multiple networks at the time of no network coverage. It can be accessed at rural and geographical areas. This can be achieved by this mobile application. The application is capable of temporary switch over between various networks. With this application both the service provider and the network user are benefited. The service provider is benefited by charging a minimum cost for utilizing other network. It provides security in terms of password that is unique to avoid unauthorized users and to prevent loss of balance. The goal intended to be attained is a complete utilization of available network at significant situations and to provide feature that satisfy the customer needs. The temporary switch over is done to manage emergency calls when user is in rural or geographical area, where there will be a very low network coverage. Since people find it trend in using Android mobile, this application is designed as an Android applications, which can be freely downloaded and installed from Play store. In the current scenario, the service provider enables the user to change their network without shifting their mobile network. This application affords a clarification for users while they are jammed in a critical situation. This application is designed by using Android 4.2 and SQLite Version3.Keywords: mobile number, random number, alarm, imei number, call
Procedia PDF Downloads 3617253 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble
Procedia PDF Downloads 4927252 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.Keywords: biological molecular networks, essential genes, graph theory, network subgraphs
Procedia PDF Downloads 1567251 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2627250 Emerging Research Trends in Routing Protocol for Wireless Sensor Network
Authors: Subhra Prosun Paul, Shruti Aggarwal
Abstract:
Now a days Routing Protocol in Wireless Sensor Network has become a promising technique in the different fields of the latest computer technology. Routing in Wireless Sensor Network is a demanding task due to the different design issues of all sensor nodes. Network architecture, no of nodes, traffic of routing, the capacity of each sensor node, network consistency, service value are the important factor for the design and analysis of Routing Protocol in Wireless Sensor Network. Additionally, internal energy, the distance between nodes, the load of sensor nodes play a significant role in the efficient routing protocol. In this paper, our intention is to analyze the research trends in different routing protocols of Wireless Sensor Network in terms of different parameters. In order to explain the research trends on Routing Protocol in Wireless Sensor Network, different data related to this research topic are analyzed with the help of Web of Science and Scopus databases. The data analysis is performed from global perspective-taking different parameters like author, source, document, country, organization, keyword, year, and a number of the publication. Different types of experiments are also performed, which help us to evaluate the recent research tendency in the Routing Protocol of Wireless Sensor Network. In order to do this, we have used Web of Science and Scopus databases separately for data analysis. We have observed that there has been a tremendous development of research on this topic in the last few years as it has become a very popular topic day by day.Keywords: analysis, routing protocol, research trends, wireless sensor network
Procedia PDF Downloads 2157249 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine
Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David
Abstract:
Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication
Procedia PDF Downloads 6957248 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.Keywords: distributed generation photovoltaic (DG PV), optimal location, penetration level, sub–transmission network
Procedia PDF Downloads 3497247 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment
Authors: Jatuphum Ketchatturat
Abstract:
Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.Keywords: learning achievement, monitoring and evaluation, value-added assessment
Procedia PDF Downloads 4237246 The Modification of Convolutional Neural Network in Fin Whale Identification
Authors: Jiahao Cui
Abstract:
In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction
Procedia PDF Downloads 1227245 Passenger Flow Characteristics of Seoul Metropolitan Subway Network
Authors: Kang Won Lee, Jung Won Lee
Abstract:
Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB
Procedia PDF Downloads 2897244 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary
Procedia PDF Downloads 327