Search results for: greenhouse gas emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1752

Search results for: greenhouse gas emissions

1512 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 348
1511 Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India

Authors: G. N. Tiwari, Shyam

Abstract:

Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively.

Keywords: exergy, greenhouse, photovoltaic thermal, solar dryer

Procedia PDF Downloads 404
1510 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels

Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam

Abstract:

The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.

Keywords: urea, NOx emissions, diesel engines, biodiesels

Procedia PDF Downloads 486
1509 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 301
1508 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 254
1507 Bioreactor Simulator Design: Measuring Built Environment Health and Ecological Implications from Post-Consumer Textiles

Authors: Julia DeVoy, Olivia Berlin

Abstract:

The United States exports over 1.6 billion pounds of post-consumer textiles every year, primarily to countries in the Global South. These textiles make their way to landfills and open-air dumps where they decompose, contaminating water systems and releasing harmful greenhouse gases. Through this inequitable system of waste disposal, countries with less political and economic power are coerced into accepting the environmental and health consequences of over-consumption in the Global North. Thus, the global trade of post-consumer textile waste represents a serious issue of environmental justice and a public health hazard. Our research located, characterizes, and quantifies the environmental and human health risks that occur when post-consumer textiles are left to decompose in landfills and open-air dumps in the Global South. In our work, we make use of United Nations International Trade Statistics data to map the global distribution of post-consumer textiles exported from the United States. Next, we present our landfill simulating reactor designed to measure toxicity of leachate resulting from the decomposition of textiles in developing countries and to quantify the related greenhouse gas emissions. This design makes use of low-cost and sustainable materials to promote frugal innovation and make landfill reactors more accessible. Finally, we describe how the data generated from these tools can be leveraged to inform individual consumer behaviors, local policies around textile waste disposal, and global advocacy efforts to mitigate the environmental harms caused by textile waste.

Keywords: sustainability, textile design, public health, built environment

Procedia PDF Downloads 123
1506 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 473
1505 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution

Authors: Flavio Gazzani

Abstract:

Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.

Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm

Procedia PDF Downloads 325
1504 Magnitude of Green Computing in Trending IT World

Authors: Raghul Vignesh Kumar, M. Vadivel

Abstract:

With the recent years many industries and companies have turned their attention in realizing how going 'green' can benefit public relations, lower cost, and reduce global emissions from industrial manufacturing. Green Computing has become an originative way on how technology and ecology converge together. It is a growing import subject that creates an urgent need to train next generation computer scientists or practitioners to think ‘green’. However, green computing has not yet been well taught in computer science or computer engineering courses as a subject. In this modern IT world it’s impossible for an organization or common man to work without hardware like servers, desktop, IT devices, smartphones etc. But it is also important to consider the harmful impact of those devices and steps to achieve energy saving and environmental protection. This paper presents the magnitude of green computing and steps to be followed to go green.

Keywords: green computing, carbon-dioxide, greenhouse gas, energy saving, environmental protection agency

Procedia PDF Downloads 402
1503 Eco-Literacy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening

Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León García

Abstract:

One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and non-governmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the eco-technologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.

Keywords: farming eco-technologies, food security, multidisciplinary, pedagogical praxis

Procedia PDF Downloads 314
1502 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 192
1501 Revolutionizing Mobility: Decoding Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (HFCVs)

Authors: Samarjeet Singh, Shubhank Arya, Shubham Chauhan

Abstract:

In recent years, the rise in carbon emissions and the widespread effects of global warming have brought new energy vehicles into the spotlight. Electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs), both producing zero tailpipe emissions, are seen as promising alternatives. This paper examines the working, structural characteristics, and safety designs of EVs and HFCVs, comparing their carbon emissions, charging infrastructure, energy efficiency, and safety features. The analysis reveals that both EVs and HFCVs significantly reduce carbon emissions and enhance safety compared to traditional vehicles, with EVs showing greater emission reductions. Moreover, EVs are advancing more rapidly in terms of charging infrastructure compared to hydrogen energy vehicles. However, HFCVs exhibit lower energy efficiency than EVs. In terms of safety, both types surpass conventional vehicles, though EVs are more prone to overheating and fire hazards due to battery design issues. Current research suggests that EV technology and its supporting infrastructure are more comprehensive, cost-effective, and efficient in reducing carbon emissions. With continued investment in the development of new energy vehicles and potential advancements in hydrogen energy production, the future for HFCVs appears promising. The paper also expresses optimism for innovative solutions that could accelerate the growth of hydrogen energy vehicles.

Keywords: electric vehicles, fuel cell electric vehicles, automotive engineering, energy transition

Procedia PDF Downloads 34
1500 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 160
1499 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 23
1498 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 69
1497 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 29
1496 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 66
1495 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 130
1494 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 363
1493 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Vaninsky

Abstract:

The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models

Procedia PDF Downloads 311
1492 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality

Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez

Abstract:

Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.

Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement

Procedia PDF Downloads 105
1491 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.

Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines

Procedia PDF Downloads 299
1490 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 134
1489 Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions

Authors: M. A. Badr, M. N. El Kordy, A. N. Mohib, M. M. Ibrahim

Abstract:

The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.

Keywords: hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study

Procedia PDF Downloads 392
1488 Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials

Authors: Yukinori Fuse, Masato Kawaguchi

Abstract:

A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM.

Keywords: asbestos, renovation, risk assessment, maintenance

Procedia PDF Downloads 373
1487 Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes

Authors: Mthiyane Pretty, Mitsui Toshiake, Nagano Hirohiko, Aycan Murat

Abstract:

Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄.

Keywords: greenhouse gases, methane, morphological characterization, alternating wetting and drying

Procedia PDF Downloads 76
1486 The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low.

Keywords: hydrogen, methanol, alternative fuel, emissions, spark ignition engines

Procedia PDF Downloads 189
1485 An Appraisal of Mitigation and Adaptation Measures under Paris Agreement 2015: Developing Nations' Pie

Authors: Olubisi Friday Oluduro

Abstract:

The Paris Agreement 2015, the result of negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), after Kyoto Protocol expiration, sets a long-term goal of limiting the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and of pursuing efforts to limiting this temperature increase to 1.5 degrees Celsius. An advancement on the erstwhile Kyoto Protocol which sets commitments to only a limited number of Parties to reduce their greenhouse gas (GHGs) emissions, it includes the goal to increase the ability to adapt to the adverse impacts of climate change and to make finance flows consistent with a pathway towards low GHGs emissions. For it achieve these goals, the Agreement requires all Parties to undertake efforts towards reaching global peaking of GHG emissions as soon as possible and towards achieving a balance between anthropogenic emissions by sources and removals by sinks in the second half of the twenty-first century. In addition to climate change mitigation, the Agreement aims at enhancing adaptive capacity, strengthening resilience and reducing the vulnerability to climate change in different parts of the world. It acknowledges the importance of addressing loss and damage associated with the adverse of climate change. The Agreement also contains comprehensive provisions on support to be provided to developing countries, which includes finance, technology transfer and capacity building. To ensure that such supports and actions are transparent, the Agreement contains a number reporting provisions, requiring parties to choose the efforts and measures that mostly suit them (Nationally Determined Contributions), providing for a mechanism of assessing progress and increasing global ambition over time by a regular global stocktake. Despite the somewhat global look of the Agreement, it has been fraught with manifold limitations threatening its very existential capability to produce any meaningful result. Considering these obvious limitations some of which were the very cause of the failure of its predecessor—the Kyoto Protocol—such as the non-participation of the United States, non-payment of funds into the various coffers for appropriate strategic purposes, among others. These have left the developing countries largely threatened eve the more, being more vulnerable than the developed countries, which are really responsible for the climate change scourge. The paper seeks to examine the mitigation and adaptation measures under the Paris Agreement 2015, appraise the present situation since the Agreement was concluded and ascertain whether the developing countries have been better or worse off since the Agreement was concluded, and examine why and how, while projecting a way forward in the present circumstance. It would conclude with recommendations towards ameliorating the situation.

Keywords: mitigation, adaptation, climate change, Paris agreement 2015, framework

Procedia PDF Downloads 154
1484 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 32
1483 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 471