Search results for: delta doping
360 The Effectiveness of Transcranial Electrical Stimulation on Brain Wave Pattern and Blood Pressure in Patients with Generalized Anxiety Disorder
Authors: Mahtab Baghaei, Seyed Mahmoud Tabatabaei
Abstract:
Aim & Background: Electrical stimulation of transcranial direct current is considered one of the treatment methods for mental disorders. The aim of this study was to evaluate the effectiveness of transcranial electrical stimulation on the delta, theta, alpha, beta and systolic and diastolic blood pressure in patients with generalized anxiety disorder. Materials and Methods: The present study was a double-blind intervention with a pre-test and post-test design on people with generalized anxiety disorder in Tabriz in 1400. In this study, 30 patients with generalized anxiety disorder were selected by purposive sampling method based on the criteria specified in DSM-5 and randomly divided into an experimental group (n = 15) and a control group (n = 15). The experimental group received two sessions of 30 minutes of electrical stimulation of transcranial direct current with an intensity of 2 mA in the area of the lateral dorsal prefrontal cortex, and the control group also received artificial stimulation. Results: The results showed that transcranial electrical stimulation reduces delta and theta waves and increases beta and alpha brain waves in the experimental group. On the other hand, this method also showed a significant decrease in systolic and diastolic blood pressure in these patients (p <0.01). Conclusion: The results show that transcranial electrical stimulation has a statistically significant effect on brain waves and blood pressure, and this non-invasive method can be used as one of the treatment methods in people with generalized anxiety disorder.Keywords: transcranial direct current electrical stimulation, brain waves, systolic blood pressure, diastolic blood pressure
Procedia PDF Downloads 105359 Planckian Dissipation in Bi₂Sr₂Ca₂Cu₃O₁₀₋δ
Authors: Lalita, Niladri Sarkar, Subhasis Ghosh
Abstract:
Since the discovery of high temperature superconductivity (HTSC) in cuprates, several aspects of this phenomena have fascinated physics community. The most debated one is the linear temperature dependence of normal state resistivity over wide range of temperature in violation of with Fermi liquid theory. The linear-in-T resistivity (LITR) is the indication of strongly correlated metallic, known as “strange metal”, attributed to non Fermi liquid theory (NFL). The proximity of superconductivity to LITR suggests that there may be underlying common origin. The LITR has been shown to be due to unknown dissipative phenomena, restricted by quantum mechanics and commonly known as ‘‘Planckian dissipation” , the term first coined by Zaanen and the associated inelastic scattering time τ and given by 1/τ=αkBT/ℏ, where ℏ, kB and α are reduced Planck’s constant, Boltzmann constant and a dimensionless constant of order of unity, respectively. Since the first report, experimental support for α ~ 1 is appearing in literature. There are several striking issues which remain to be resolved if we desire to find out or at least get a clue towards microscopic origin of maximal dissipation in cuprates. (i) Universality of α ~ 1, recently some doubts have been raised in some cases. (ii) So far, Planckian dissipation has been demonstrated in overdoped Cuprates, but if the proximity to quantum criticality is important, then Planckian dissipation should be observed in optimally doped and marginally underdoped cuprates. The link between Planckian dissipation and quantum criticality still remains an open problem. (iii) Validity of Planckian dissipation in all cuprates is an important issue. Here, we report reversible change in the superconducting behavior of high temperature superconductor Bi2Sr2Ca2Cu3O10+δ (Bi-2223) under dynamic doping induced by photo-excitation. Two doped Bi-223 samples, which are x = 0.16 (optimal-doped), x = 0.145 (marginal-doped) have been used for this investigation. It is realized that steady state photo-excitation converts magnetic Cu2+ ions to nonmagnetic Cu1+ ions which reduces superconducting transition temperature (Tc) by killing superfluid density. In Bi-2223, one would expect the maximum of suppression of Tc should be at charge transfer gap. We have observed suppression of Tc starts at 2eV, which is the charge transfer gap in Bi-2223. We attribute this transition due to Cu-3d9(Cu2+) to Cu-3d10(Cu+), known as d9 − d10 L transition, photoexcitation makes some Cu ions in CuO2 planes as spinless non-magnetic potential perturbation as Zn2+ does in CuO2 plane in case Zn-doped cuprates. The resistivity varies linearly with temperature with or without photo-excitation. Tc can be varied by almost by 40K be photoexcitation. Superconductivity can be destroyed completely by introducing ≈ 2% of Cu1+ ions for this range of doping. With this controlled variation of Tc and resistivity, detailed investigation has been carried out to reveal Planckian dissipation underdoped to optimally doped Bi-2223. The most important aspect of this investigation is that we could vary Tc dynamically and reversibly, so that LITR and associated Planckian dissipation can be studied over wide ranges of Tc without changing the doping chemically.Keywords: linear resistivity, HTSC, Planckian dissipation, strange metal
Procedia PDF Downloads 63358 Two-Dimensional Material-Based Negative Differential Resistance Device with High Peak-to- Valley Current Ratio for Multi-Valued Logic Circuits
Authors: Kwan-Ho Kim, Jin-Hong Park
Abstract:
The multi-valued logic (MVL) circuits, which can handle more than two logic states, are one of the promising solutions to overcome the bit density limitations of conventional binary logic systems. Recently, tunneling devices such as Esaki diode and resonant tunneling diode (RTD) have been extensively explored to construct the MVL circuits. These tunneling devices present a negative differential resistance (NDR) phenomenon in which a current decreases as a voltage increases in a specific applied voltage region. Due to this non-monotonic current behavior, the tunneling devices have more than two threshold voltages, consequently enabling construction of MVL circuits. Recently, the emergence of two dimensional (2D) van der Waals (vdW) crystals has opened up the possibility to fabricate such tunneling devices easily. Owing to the defect-free surface of the 2D crystals, a very abrupt junction interface could be formed through a simple stacking process, which subsequently allowed the implementation of a high-performance tunneling device. Here, we report a vdW heterostructure based tunneling device with multiple threshold voltages, which was fabricated with black phosphorus (BP) and hafnium diselenide (HfSe₂). First, we exfoliated BP on the SiO₂ substrate and then transferred HfSe₂ on BP using dry transfer method. The BP and HfSe₂ form type-Ⅲ heterojunction so that the highly doped n+/p+ interface can be easily implemented without additional electrical or chemical doping process. Owing to high natural doping at the junction, record high peak to valley ratio (PVCR) of 16 was observed to the best our knowledge in 2D materials based NDR device. Furthermore, based on this, we first demonstrate the feasibility of the ternary latch by connecting two multi-threshold voltage devices in series.Keywords: two dimensional van der Waals crystal, multi-valued logic, negative differential resistnace, tunneling device
Procedia PDF Downloads 217357 Environmental Drivers of Ichthyofauna Species Diversity and Richness in the Lower Reaches of Warri River, a Typical Mangrove Ecosystem in the Niger Delta, Nigeria
Authors: F. O. Arimoro, F. N. Okonkwo, R. B. Ikomi
Abstract:
The environmental determinants structuring species richness has been generating interest recently but we still lack an understanding of these patterns in various regions (e.g. Afrotropical), and how seasons help to structure these patterns. Our aim was to assessed the environmental drivers importance in regulating species richness and community structure of fish species. The lchthyofauna assemblage of Warri River, Niger Delta area of Nigeria was studied between August 2013 and July 2014. A total of 1152 individuals representing 43 species in 23 families and 30 genera were caught. Of the 43 species recorded, 67.4%, 53.5% and 67.4% of the species occurred in Stations 1, 2 and 3 respectively. Eight taxa representing 18.6% of the total abundance were ubiquitous. The claroteid, Chrysichthys walkeri and the cichlid, Chromidotilapia guentheri were the most dominant species accounting for 19.2% and 6.0% respectively of the total catch. The species richness and general diversity were relatively higher in station 1 although Jaccard similarity index revealed that stations 1 and 3 were significantly similar while station 2 showed complete dissimilarity with stations 1 and 3. Canonical correspondence analysis indicated that dissolved oxygen, electrical conductivity, total nitrogen, Biochemical Oxygen demand and temperature were important variables structuring the overall fish assemblages. The presence of appreciable number of juveniles in this water body suggests that the Warri River is a breeding and nursery ground for fish species particularly those of brackish origin. These findings indicate that the water body is still useful as a good fishing ground for the rural communities and every effort should be put in place to ensure its protection and conservation for the production of healthy fish.Keywords: Chrysichthys walkeri, fish communities, mangrove ecosystem, physicochemical parameters, Warri River
Procedia PDF Downloads 492356 Investigation Of Eugan's, Optical Properties With Dft
Authors: Bahieddine. Bouabdellah, Benameur. Amiri, Abdelkader.nouri
Abstract:
Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials.Keywords: eugan, fp-lapw, dft, wien2k, mbj hubbard
Procedia PDF Downloads 76355 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 123354 Electrical Properties of CVD-Graphene on SiC
Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault
Abstract:
In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide
Procedia PDF Downloads 672353 Persistent Organochlorine Pesticides (POPs) in Water, Sediment, Fin Fishes (Schilbes mystus and Hemichromis fasciatus) from River Ogun, Lagos, Nigeria
Authors: Edwin O. Clarke, Akintade O. Adeboyejo
Abstract:
Intensive use of pesticides resulted in dispersal of pollutants throughout the globe. This study was carried out to investigate persistent Organochlorine pesticides (POPs) in water, sediment and fin fishes, Schilbes mystus and Hemichromis fasciatus from two different sampling stations along River Ogun between the month of June 2012 and January 2013. The Organochlorine pesticides analyzed include DDT (pp’1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane), DDD, DDE (pp1,1-dichloro-2, 2-bis-(4-chlorophenyl) ethylene, HCH (gamma 1,2,3,4,5,6-hexachlorocylohexane, HCB hexachlorobenzene),Dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a octahydro- 1,4,5,8 dimethanonaphthalene). The analysis was done using Gas Chromatograph with Electron Capture Detector. In water sample, the result showed that PPDDT, Endrin aldehyde, Endrin ketone concentrations were high in both stations. The mean value of Organochlorine analyzed in water range from Beta BHC (0.50±0.10µg/l) to PP DDT (162.86±0.21µg/l) in Kara sample station and Beta BHC (0.20±0.07µg/l) to Endrin Aldehyde (76.47±0.02µg/l) in Odo-Ogun sample station. The levels of POPs obtained in sediments ranged from 0.40±0.23µg/g (Beta BHC) to 259.90 ± 1.00µg/kg (Endosulfan sulfate) in Kara sample station and 0.64±0.00µg/g (Beta BHC) to 379.77 ±0.15 µg/g (Endosulfan sulfate) in Odo-Ogun sample station. The levels of POPs obtained in fin fish samples ranged from 0.29±0.00µg/g (Delta BHC) to 197.87 ± 0.31µg/g (PP DDT) in Kara sample station and in Odo-Ogun sample station the mean value for fish samples range from 0.29 ± 0.00 µg/g (Delta BHC) to 197.87 ± 0.32 µg/g (PP DDT). The study showed that the accumulation of POPs affect the environment and reduce water quality. The results showed that the concentrations were found to exceed the maximum acceptable concentration of 0.10µg/l value set by the European Union for the protection of freshwater aquatic life and this can be hazardous if the trend is not checked.Keywords: hazardous, persistent, pesticides, biomes
Procedia PDF Downloads 295352 Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece
Authors: E. K. Tripsanas, D. Spanos, I. Oikonomopoulos, K. Stathopoulou, A. S. Abdelsamad, A. Pagoulatos
Abstract:
Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.Keywords: sequence stratigraphy, basin analysis, river deltas, submarine channels
Procedia PDF Downloads 327351 Dielectric Response Analysis Measurement for Diagnostic Oil-Paper Insulation System on Aged Inter Bus Transformer 3x10 MVA
Authors: Eki Farlen, Akas
Abstract:
Condition assessment of oil-paper-insulated power transformers, particularly of water content, is becoming increasingly important for aged transformers. As insulation ages, it can produce water, which reduces its dielectric strength, accelerates the cellulose ageing process, and causes gas bubbles to form at high temperatures. This paper mainly assesses the life condition of oil-paper insulation system of Inter Bus Transformer (IBT) 30 MVA, 150/30 kV in PT PLN-Substation Jelok that has been operating for 41 years, since 1974. Valuable information about the condition of high voltage insulation may be obtained by measuring its dielectric response. This paper describes in detail the interpretation of Dielectric Response Analysis (DIRANA) measurements and the test result compared to other insulation tests to get deep information for diagnostic, such as Tan delta test, oil characteristic test and Dissolve Gas Analysis (DGA) test. This paper mainly discusses the parameter relationship between moisture content, water content, acidity, oil conductivity and dissipation factor. The result and analysis show that IBT 30 MVA Jelok phase U and W had just been ageing due to high acidity level (>0.2 mgKOH/g) which cause high moisture in cellulose/paper (%) are in wet category about 4.7% and 5% and water content in oil (ppm) about 3.13 ppm and 3.33 ppm at temperature 20°C. High acidity level can make oxidation process and produce water in paper and particle which can decrease the value of Interfacial Tension (IFT) below 22 mN/m (poor category) for both phase U and W. Even if paper insulation of transformer are in wet condition, dissipation factor and capacitance at the same frequency (50 Hz) from both measurement DIRANA test and Tangent delta test give the same result (almost), the results are 0.69% and 0.71% (<1%), it may be acceptable and should not be investigated. The DGA results show that TDCG are in level one (1) condition and there are no found a Key Gases, it means that transformers had no failure during operation like arching, partial discharge and thermal in oil or cellulose.Keywords: diagnostic, inter-bus transformer, oil-paper insulation, moisture, dissipation factor
Procedia PDF Downloads 280350 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan
Authors: Emad A. Ahmed
Abstract:
Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics
Procedia PDF Downloads 677349 Effects of Supplementation with Annatto (Bixa Orellana)-Derived δ-Tocotrienol on the Nicotine-Induced Reduction in Body Weight and 8-Cell Preimplantation Embryonic Development in Mice
Authors: M. H. Rajikin, S. M. M. Syairah, A. R. Sharaniza
Abstract:
Effects of nicotine on pre-partum body weight and preimplantation embryonic development has been reported previously. Present study was conducted to determine the effects of annatto (Bixa orellana)-derived delta-tocotrienol (TCT) (with presence of 10% gamma-TCT isomer) on the nicotine-induced reduction in body weight and 8-cell embryonic growth in mice. Twenty four 6-8 weeks old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) were gavaged with 0.1 ml tocopherol stripped corn oil, G2 was subcutaneously (s.c.) injected with 3 mg/kg/day of nicotine, G3 received concurrent treatment of nicotine (3 mg/kg/day) and 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers) and G4 was given 60 mg/kg/day of δ-TCT mixture alone. Body weights were recorded daily during the treatment. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. Collected embryos were cultured in vitro. Results showed that throughout Day 1 to Day 7, the body weight of nicotine treated group (G2) was significantly lower (p<0.05) than that of G1, G3 and G4. Intervention with δ-TCT mixture (G3) managed to increase the body weight close to the control group. This is also observed in the group treated with δ-TCT mixture alone (G4). The development of 8-cell embryos following in vitro culture (IVC) was totally inhibited in G2. Intervention with δ-TCT mixture (G3) resulted in the production of 8-cell embryos, although it was not up to that of the control group. Treatment with δ-TCT mixture alone (G4) caused significant increase in the average number of produced 8-cell embryo compared to G1. Present data indicated that δ-TCT mixture was able to reverse the body weight loss in nicotine treated mice and the development of 8-cell embryos was also improved.Keywords: δ-tocotrienol, body weight, nicotine, preimplantation embryonic development
Procedia PDF Downloads 356348 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 142347 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya
Authors: Aimen Saleh
Abstract:
The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.Keywords: Acacus, Ghadames , Libya, Silurian
Procedia PDF Downloads 146346 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.Keywords: detectivity, photodetectors, continuity equation, current noise
Procedia PDF Downloads 646345 Adsorption: A Decision Maker in the Photocatalytic Degradation of Phenol on Co-Catalysts Doped TiO₂
Authors: Dileep Maarisetty, Janaki Komandur, Saroj S. Baral
Abstract:
In the current work, photocatalytic degradation of phenol was carried both in UV and visible light to find the slowest step that is limiting the rate of photo-degradation process. Characterization such as XRD, SEM, FT-IR, TEM, XPS, UV-DRS, PL, BET, UPS, ESR and zeta potential experiments were conducted to assess the credibility of catalysts in boosting the photocatalytic activity. To explore the synergy, TiO₂ was doped with graphene and alumina. The orbital hybridization with alumina doping (mediated by graphene) resulted in higher electron transfer from the conduction band of TiO₂ to alumina surface where oxygen reduction reactions (ORR) occur. Besides, the doping of alumina and graphene introduced defects into Ti lattice and helped in improving the adsorptive properties of modified photo-catalyst. Results showed that these defects promoted the oxygen reduction reactions (ORR) on the catalyst’s surface. ORR activity aims at producing reactive oxygen species (ROS). These ROS species oxidizes the phenol molecules which is adsorbed on the surface of photo-catalysts, thereby driving the photocatalytic reactions. Since mass transfer is considered as rate limiting step, various mathematical models were applied to the experimental data to probe the best fit. By varying the parameters, it was found that intra-particle diffusion was the slowest step in the degradation process. Lagergren model gave the best R² values indicating the nature of rate kinetics. Similarly, different adsorption isotherms were employed and realized that Langmuir isotherm suits the best with tremendous increase in uptake capacity (mg/g) of TiO₂-rGO-Al₂O₃ as compared undoped TiO₂. This further assisted in higher adsorption of phenol molecules. The results obtained from experimental, kinetic modelling and adsorption isotherms; it is concluded that apart from changes in surface, optoelectronic and morphological properties that enhanced the photocatalytic activity, the intra-particle diffusion within the catalyst’s pores serve as rate-limiting step in deciding the fate of photo-catalytic degradation of phenol.Keywords: ORR, phenol degradation, photo-catalyst, rate kinetics
Procedia PDF Downloads 149344 Diversity and Distribution of Cytochrome P450 2C9 Genes Related with Medical Cannabis in Thai Patients
Authors: Tanakrit Doltanakarn
Abstract:
Introduction: These days, cannabis is being accepted in many countries due to the fact that cannabis could be use in medical. The medical cannabis is used to treat and reduce the pain many diseases. For example, neuropathic pain, Parkinson, autism disorders, cancer pain reduce the adverse effect of chemotherapy, diabetes, and migraine. Active ingredients in cannabis that modulate patients' perceptions of their conditions include Δ9‐tetrahydrocannabinol (THC), cannabidiol (CBD), flavonoids, and terpenes. However, there is an adverse effect of cannabis, cardiovascular effects, psychosis, schizophrenia, mood disorder, and cognitive alternation. These effects are from the THC and CBD ingredients in the cannabis. The metabolize processes of delta-9 THC to 11-OH-delta 9 -THC (inactive form), THC were cause of adverse effects. Interestingly, the distributions of CYP2C9 gene (CYP2C9*2 and CYP2C9*3, poor metabolizer) that might affect incidences of adverse effects in patients who treated with medical cannabis. Objective: The aim of this study we want to investigate the association between genetic polymorphism of CYP2C9 frequency and Thai patients who treated with medical cannabis. Materials and Methods:We recruited sixty-five unrelated Thai patients from the College of Pharmacy, Rangsit University. DNA were extracted using Genomic DNA Mini Kit. Genotyping of CYP2C9*2 (430C>T, rs1799853) and CYP2C9*3 (1075A>C, rs1057910) were genotyped by the TaqMan Real-time PCR assay. Results: Among these 31 medicals cannabis-induced ADRs patients, they were diagnosed with 22 (33.85%) tachycardia and 3 (4.62%) arrhythmia. There were 34 (52.31%) medical cannabis-tolerant controls who were included in this study.40 (61.53%) Thai patients were female, and 25 (38.46%) were male, with median age of 57 (range 27 – 87) years. In this study, we found none of the medical cannabis-induced ADRs carried CYP2C9*2 variant along with medical cannabis-tolerant control group. CYP2C9*3 variant (intermediate metabolizer, IM) was found just only one of thirty-one (3.23%) in the medical cannabis-induced ADRs and two of thirty-fourth (5.88%) in the tolerant controls. Conclusions: Thus, the distribution of CYP2C9 alleles offer a comprehensive view of pharmacogenomics marker in Thai population that could be used as a reference for worldwide to investigate the pharmacogenomics application.Keywords: medical cannabis, adverse effect, CYP2C9, thai patients
Procedia PDF Downloads 104343 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)
Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida
Abstract:
Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences
Procedia PDF Downloads 61342 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles
Authors: Yuvraj S. Malghe, Atul B. Lavand
Abstract:
In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide
Procedia PDF Downloads 287341 Oily Sludge Bioremediation Pilot Plant Project, Nigeria
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal
Procedia PDF Downloads 458340 Investigating the Relationship between Bioethics and Sports
Authors: Franco Bruno Castaldo
Abstract:
Aim: The term bioethics is a term coined by VanPotter R ., who in 1970 thought of a discipline, capable of contributing to a better quality of human life and the cosmos. At first he intended bioethics as a wisdom capable of creating a bridge between bios and ethos and between bio-experimental science and ethical-anthropological sciences.Similarly, the modern sport is presented as a polysemic phenomenon, multidisciplinary, pluris value. From the beginning, the sport is included in the discussion of bioethical problems with doping. Today, the ethical problems of the sport are not only ascribable to doping, the medicalization of society, Techniques for enhancement, violence, Fraud, corruption, even the acceptance of anthropological transhumanist theories. Our purpose is to shed light on these issues so that there is a discernment, a fine-tuning also in educational programs, for the protection of all the sport from a scientist adrift, which would lead to an imbalance of values. Method: Reading, textual and documentary analysis, evaluation of critical examples. Results: Harold VanderZwaag, (1929-2011) in ancient times, asked: how many athletic directors have read works of sport philosophy or humanities? Along with E.A. Zeigler (North American Society for Sport Management) are recognized as pioneers of educational Sport Management. Comes the need to leave the confines of a scientific field, In order to deal with other than itself. Conclusion: The quantitative sciences attracts more funds than qualitative ones, the philosopher M. Nussbaum, has relaunched the idea that the training of students will have to be more disinterested than utilitarian, Offering arguments against the choice of anti-classical, analyzing and comparing different educational systems. schools, universities must assign a prominent place in the program of study to the humanistic, literary and artistic subjects, cultivating a participation that can activate and improve the ability to see the world through the eyes of another person. In order to form citizens who play their role in society, science and technology alone are not enough, we need disciplines that are able to cultivate critical thinking, respect for diversity, solidarity, the judgment, the freedom of expression. According to A. Camelli, the humanities faculties prepare for that life-long learning, which will characterize tomorrow's jobs.Keywords: bioethics, management, sport, transhumanist, medicalization
Procedia PDF Downloads 517339 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria
Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola
Abstract:
The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress
Procedia PDF Downloads 167338 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets
Authors: Rabindranath Bag, Surjeet Singh
Abstract:
Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique
Procedia PDF Downloads 279337 An Ethno-Scientific Approach for Restoration of South Indian Heritage Rice Varieties
Authors: A. Sathya, C. Manojkumar, D. Visithra
Abstract:
The South Indian peninsula has rich diversity of both heritage and conventional rice varieties. With the prime focus set on high yield and increased productivity, a number of traditional/heritage rice varieties have dwindled into the forgotten past. At present, in the face of climate change, the hybrids and conventional varieties struggle for sustainable yield. The need of copious irrigation and high nutrient inputs for the hybrids and conventional varieties have cornered the farming and research community to resort to heritage rice varieties for their sturdy survival capability. An ethno-scientific effort has been taken in the Cauvery delta tracts of South India to restore these traditional/heritage rice varieties. A closer field level performance evaluation under organic condition has been undertaken for 10 heritage rice varieties. The morpho-agronomic characterization across vegetative and reproductive stages have revealed a pattern of variation in duration, plant height, number of tillers, productive tillers, etc. The shortest duration was recorded for a variety with the vernacular name of ‘Arubadaam kuruvai’. A traditional rice variety called ‘Maapillai samba’ is claimed to impart instant energy. The supernatant water of the overnight soaked cooked rice of Maapillai samba is a source of instant energy. The physico-chemical analysis of this variety is being explored for its instant nutritional boosting ability. Wide spectrum of nutritional characters including palatability and marketability preferences has also been analyzed for all these 10 heritage rice varieties. A ‘Farmer’s harvest day festival’ was organized, providing opportunity for the ‘Cauvery delta farmers’ to identify the special features and exchange their views on these standing golden ripe paddy varieties directly. The airing of their ethnic knowledge pooled with interesting scientific investigations of these 10 rich heritage rice varieties of South India undertaken will be elaborately discussed enlightening the perspectives on the pathway of resurrection and restoration of this heritage of the past.Keywords: biodiversity, conservation, heritage, rice, traditional, varieties
Procedia PDF Downloads 431336 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions
Authors: Eun-Soo Lim, Young-Min Kang
Abstract:
M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties
Procedia PDF Downloads 215335 Structural and Morphological Study of Europium Doped ZnO
Authors: Abdelhak Nouri
Abstract:
Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO
Procedia PDF Downloads 183334 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility
Procedia PDF Downloads 359333 Implementation of 4-Bit Direct Charge Transfer Switched Capacitor DAC with Mismatch Shaping Technique
Authors: Anuja Askhedkar, G. H. Agrawal, Madhu Gudgunti
Abstract:
Direct Charge Transfer Switched Capacitor (DCT-SC) DAC is the internal DAC used in Delta-Sigma (∆∑) DAC which works on Over-Sampling concept. The Switched Capacitor DAC mainly suffers from mismatch among capacitors. Mismatch among capacitors in DAC, causes non linearity between output and input. Dynamic Element Matching (DEM) technique is used to match the capacitors. According to element selection logic there are many types. In this paper, Data Weighted Averaging (DWA) technique is used for mismatch shaping. In this paper, the 4 bit DCT-SC-DAC with DWA-DEM technique is implemented using WINSPICE simulation software in 180nm CMOS technology. DNL for DAC with DWA is ±0.03 LSB and INL is ± 0.02LSB.Keywords: ∑-Δ DAC, DCT-SC-DAC, mismatch shaping, DWA, DEM
Procedia PDF Downloads 357332 Effect of Yb and Sm Doping on Thermoluminescence and Optical Properties of Lithium Fluoride Nanophosphor
Authors: Rakesh Dogra, Arun Kumar, Arvind Kumar Sharma
Abstract:
This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature which are independent of the rare earth dopant.Keywords: lithium flouride, thermoluminescence, UV-VIS spectroscopy, gamma radiation
Procedia PDF Downloads 0331 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated
Authors: Shiang-Hwua Yu, Po-Hsun Wu
Abstract:
This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.Keywords: self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier
Procedia PDF Downloads 361