Search results for: data mining technique
29905 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 35629904 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects
Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town
Abstract:
The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry
Procedia PDF Downloads 9229903 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.
Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye
Abstract:
In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.
Procedia PDF Downloads 7029902 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: data mining, data science, trajectory, animal behavior
Procedia PDF Downloads 14629901 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 53229900 A User Identification Technique to Access Big Data Using Cloud Services
Authors: A. R. Manu, V. K. Agrawal, K. N. Balasubramanya Murthy
Abstract:
Authentication is required in stored database systems so that only authorized users can access the data and related cloud infrastructures. This paper proposes an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. The proposed technique is likely to be more robust as the probability of breaking the password is extremely low. This framework uses a multi-modal biometric approach and SMS to enforce additional security measures with the conventional Login/password system. The robustness of the technique is demonstrated mathematically using a statistical analysis. This work presents the authentication system along with the user authentication architecture diagram, activity diagrams, data flow diagrams, sequence diagrams, and algorithms.Keywords: design, implementation algorithms, performance, biometric approach
Procedia PDF Downloads 47729899 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24129898 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction
Authors: Patricia Jiménez, Rafael Corchuelo
Abstract:
Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.Keywords: information extraction, search heuristics, semi-structured documents, web mining.
Procedia PDF Downloads 33829897 Abandoned Mine Methane Mitigation in the United States
Authors: Jerome Blackman, Pamela Franklin, Volha Roshchanka
Abstract:
The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement.Keywords: abandoned mines, coal mine methane, coal mining, methane emissions, methane mitigation, recovery and use
Procedia PDF Downloads 7829896 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 3729895 Environmental Impact Assessment in Mining Regions with Remote Sensing
Authors: Carla Palencia-Aguilar
Abstract:
Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.Keywords: carbon dioxide, NPP, MODIS, MINING
Procedia PDF Downloads 10529894 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas
Authors: Simon Mensah Ofosu
Abstract:
Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables
Procedia PDF Downloads 9529893 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4829892 Concept Drifts Detection and Localisation in Process Mining
Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa
Abstract:
Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining
Procedia PDF Downloads 34829891 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining
Authors: G. Surendra Babu
Abstract:
We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.Keywords: reclamation, open-pit mining, revegetation, reclamation methods
Procedia PDF Downloads 19329890 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering
Authors: K. Umbleja, M. Ichino
Abstract:
Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis
Procedia PDF Downloads 16229889 Application of Data Mining for Aquifer Environmental Assessment
Authors: Saman Javadi, Mehdi Hashemy, Mohahammad Mahmoodi
Abstract:
Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%.Keywords: clustering, data mining, groundwater, vulnerability assessment
Procedia PDF Downloads 60429888 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 29529887 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 32129886 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling
Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany
Abstract:
The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform
Procedia PDF Downloads 14229885 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 36129884 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 14929883 Invention of Novel Technique of Process Scale Up by Using Solid Dosage Form
Authors: Shashank Tiwari, S. P. Mahapatra
Abstract:
The aim of this technique is to reduce the steps of process scales up, save time & cost of the industries. This technique will minimise the steps of process scale up. The new steps are, Novel Lab Scale, Novel Lab Scale Trials, Novel Trial Batches, Novel Exhibit Batches, Novel Validation Batches. In these steps, it is not divided to validation batches in three parts but the data of trials batches, Exhibit Batches and Validation batches are use and compile for production and used for validation. It also increases the batch size of the trial, exhibit batches. The new size of trials batches is not less than fifty Thousand, the exhibit batches increase up to two lack and the validation batches up to five lack. After preparing the batches all their data & drugs use for stability & maintain the validation record and compile data for the technology transfer in production department for preparing the marketed size batches.Keywords: batches, technique, preparation, scale up, validation
Procedia PDF Downloads 35829882 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State
Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule
Abstract:
The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State
Procedia PDF Downloads 32429881 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 15429880 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index
Authors: Kamakshaiah Kolli, R. Seshadri
Abstract:
Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification
Procedia PDF Downloads 43129879 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.Keywords: air pollution, linear programming, mining, optimization, treatment technologies
Procedia PDF Downloads 20829878 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 29729877 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater
Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel
Abstract:
Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration
Procedia PDF Downloads 39129876 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 529