Search results for: cointegration approach in panel data
34166 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey
Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ
Abstract:
A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.Keywords: cointegration, economic growth, periodogram ordinate, tourism
Procedia PDF Downloads 26834165 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 26434164 Modelling Consistency and Change of Social Attitudes in 7 Years of Longitudinal Data
Authors: Paul Campbell, Nicholas Biddle
Abstract:
There is a complex, endogenous relationship between individual circumstances, attitudes, and behaviour. This study uses longitudinal panel data to assess changes in social and political attitudes over a 7-year period. Attitudes are captured with the question 'what is the most important issue facing Australia today', collected at multiple time points in a longitudinal survey of 2200 Australians. Consistency of attitudes, and factors predicting change over time, are assessed. The consistency of responses has methodological implications for data collection, specifically how often such questions ought to be asked of a population. When change in attitude is observed, this study assesses the extent to which individual demographic characteristics, personality traits, and broader societal events predict change.Keywords: attitudes, longitudinal survey analysis, personality, social values
Procedia PDF Downloads 13034163 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm
Authors: Mustafa Engin Başoğlu, Bekir Çakır
Abstract:
The most important component affecting the efficiency of photovoltaic power systems are solar panels. Efficiency of these systems are significantly affected because of being low efficiency of solar panel. Therefore, solar panels should be operated under maximum power point conditions through a power converter. In this study, design boost converter with maximum power point tracking (MPPT) operation has been designed and performed with Incremental Conductance (Inc-Cond) algorithm by using direct duty control. Furthermore, it is shown that performance of boost converter with MPPT operation fails under low load resistance connection.Keywords: boost converter, incremental conductance (Inc-Cond), MPPT, solar panel
Procedia PDF Downloads 104434162 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach
Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka
Abstract:
Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank
Procedia PDF Downloads 16634161 Management and Marketing Implications of Tourism Gravity Models
Authors: Clive L. Morley
Abstract:
Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.Keywords: gravity models, micro-economics, demand models, marketing
Procedia PDF Downloads 43634160 Analyzing the Connection between Productive Structure and Communicable Diseases: An Econometric Panel Study
Authors: Julio Silva, Lia Hasenclever, Gilson G. Silva Jr.
Abstract:
The aim of this paper is to check possible convergence in health measures (aged-standard rate of morbidity and mortality) for communicable diseases between developed and developing countries, conditional to productive structures features. Understanding the interrelations between health patterns and economic development is particularly important in the context of low- and middle-income countries, where economic development comes along with deep social inequality. Developing countries with less diversified productive structures (measured through complexity index) but high heterogeneous inter-sectorial labor productivity (using as a proxy inter-sectorial coefficient of variation of labor productivity) has on average low health levels in communicable diseases compared to developed countries with high diversified productive structures and low labor market heterogeneity. Structural heterogeneity and productive diversification may have influence on health levels even considering per capita income. We set up a panel data for 139 countries from 1995 to 2015, joining several data about the countries, as economic development, health, and health system coverage, environmental and socioeconomic aspects. This information was obtained from World Bank, International Labour Organization, Atlas of Economic Complexity, United Nation (Development Report) and Institute for Health Metrics and Evaluation Database. Econometric panel models evidence shows that the level of communicable diseases has a positive relationship with structural heterogeneity, even considering other factors as per capita income. On the other hand, the recent process of convergence in terms of communicable diseases have been motivated for other reasons not directly related to productive structure, as health system coverage and environmental aspects. These evidences suggest a joint dynamics between the unequal distribution of communicable diseases and countries' productive structure aspects. These set of evidence are quite important to public policy as meet the health aims in Millennium Development Goals. It also highlights the importance of the process of structural change as fundamental to shift the levels of health in terms of communicable diseases and can contribute to the debate between the relation of economic development and health patterns changes.Keywords: economic development, inequality, population health, structural change
Procedia PDF Downloads 14434159 Impact of Working Capital Management Strategies on Firm's Value and Profitability
Authors: Jonghae Park, Daesung Kim
Abstract:
The impact of aggressive and conservative working capital‘s strategies on the value and profitability of the firms has been evaluated by applying the panel data regression analysis. The control variables used in the regression models are natural log of firm size, sales growth, and debt. We collected a panel of 13,988 companies listed on the Korea stock market covering the period 2000-2016. The major findings of this study are as follow: 1) We find a significant negative correlation between firm profitability and the number of days inventory (INV) and days accounts payable (AP). The firm’s profitability can also be improved by reducing the number of days of inventory and days accounts payable. 2) We also find a significant positive correlation between firm profitability and the number of days accounts receivable (AR) and cash ratios (CR). In other words, the cash is associated with high corporate profitability. 3) Tobin's analysis showed that only the number of days accounts receivable (AR) and cash ratios (CR) had a significant relationship. In conclusion, companies can increase profitability by reducing INV and increasing AP, but INV and AP did not affect corporate value. In particular, it is necessary to increase CA and decrease AR in order to increase Firm’s profitability and value.Keywords: working capital, working capital management, firm value, profitability
Procedia PDF Downloads 18834158 A Non-parametric Clustering Approach for Multivariate Geostatistical Data
Authors: Francky Fouedjio
Abstract:
Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.Keywords: clustering, geostatistics, multivariate data, non-parametric
Procedia PDF Downloads 47634157 Grid Tied Photovoltaic Power on School Roof
Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong
Abstract:
To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.Keywords: optimal inclination, array azimuth, annual output
Procedia PDF Downloads 67534156 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine
Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa
Abstract:
During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower
Procedia PDF Downloads 22134155 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33534154 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach
Authors: Theertha Chandroth
Abstract:
This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.Keywords: XML, JSON, data comparison, integration testing, Python, SQL
Procedia PDF Downloads 13834153 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials
Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane
Abstract:
The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation
Procedia PDF Downloads 50434152 Exploring the Impact of Asset Diversification on Financial Performance: An Explanatory Study of Ethiopian Commercial Banks
Authors: Mitku Malede Ymer
Abstract:
The study was mainly intended to explore the impact of asset diversification on the financial performance of thirteen purposely selected Ethiopian commercial banks with seven consecutive years of data for the period 2011-2017, considering the availability of data. An explanatory research design has been employed to determine the impact of asset diversification on financial performance. In the meantime, a quantitative approach was used to construct the empirical model. Banks’ financial performance was measured using return on asset, and the four variables used to measure asset diversification were cash holding, fixed assets, foreign deposits, and NBE Bills, which were predictor variables. Again, the size of the bank was considered as a control variable. Then, a pooled panel regression model was employed to analyze the collected data. The result pretends that cash holding has a positive but marginally insignificant effect on financial performance, fixed assets, and foreign bank deposits have a positive and significant effect on financial performance, and NBE Bills have a negative and significant effect on banks' financial performance. Ultimately, it has been concluded that asset diversification has a significant effect on financial performance in the Ethiopian commercial banking sector. Hence, a researcher suggests that banks need to optimize their asset diversification so as to realize maximum profit and minimize the cost of funds based on the result of the study.Keywords: asset diversification, financial performance, role, commercial banks
Procedia PDF Downloads 1434151 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 22434150 The Impact of Diversification Strategy on Leverage and Accrual-Based Earnings Management
Authors: Safa Lazzem, Faouzi Jilani
Abstract:
The aim of this research is to investigate the impact of diversification strategy on the nature of the relationship between leverage and accrual-based earnings management through panel-estimation techniques based on a sample of 162 nonfinancial French firms indexed in CAC All-Tradable during the period from 2006 to 2012. The empirical results show that leverage increases encourage managers to manipulate earnings management. Our findings prove that the diversification strategy provides the needed context for this accounting practice to be possible in highly diversified firms. In addition, the results indicate that diversification moderates the relationship between leverage and accrual-based earnings management by changing the nature and the sign of this relationship.Keywords: diversification, earnings management, leverage, panel-estimation techniques
Procedia PDF Downloads 14834149 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery
Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley
Abstract:
Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter
Procedia PDF Downloads 46934148 Food Consumption and Adaptation to Climate Change: Evidence from Ghana
Authors: Frank Adusah-Poku, John Bosco Dramani, Prince Boakye Frimpong
Abstract:
Climate change is considered a principal threat to human existence and livelihood. The persistence and intensity of droughts and floods in recent years have adversely affected food production systems and value chains, making it impossible to end global hunger by 2030. Thus, this study aims to examine the effect of climate change on food consumption for both farm and non-farm households in Ghana. An important focus of the analysis is to investigate how climate change affects alternative dimensions of food security, examine the extent to which these effects vary across heterogeneous groups, and explore the channels through which climate change affects food consumption. Finally, we conducted a pilot study to understand the significance of farm and non-farm diversification measures in reducing the harmful impact of climate change on farm households. The approach of this article is to use two secondary and one primary datasets. The first secondary dataset is the Ghana Socioeconomic Panel Survey (GSPS). The GSPS is a household panel dataset collected during the period 2009 to 2019. The second dataset is monthly district rainfall and temperature gridded data from the Ghana Meteorological Agency. This data was matched to the GSPS dataset at the district level. Finally, the primary data was obtained from a survey of farm and non-farm adaptation practices used by farmers in three regions in Northern Ghana. The study employed the household fixed effects model to estimate the effect of climate change (measured by temperature and rainfall) on food consumption in Ghana. Again, it used the spatial and temporal variation in temperature and rainfall across the districts in Ghana to estimate the household-level model. Evidence of potential mechanisms through which climate change affects food consumption was explored using two steps. First, the potential mechanism variables were regressed on temperature, rainfall, and the control variables. In the second and final step, the potential mechanism variables were included as extra covariates in the first model. The results revealed that extreme average temperature and drought had caused a decrease in food consumption as well as reduced the intake of important food nutrients such as carbohydrates, protein and vitamins. The results further indicated that low rainfall increased food insecurity among households with no education compared with those with primary and secondary education. Again, non-farm activity and silos have been revealed as the transmission pathways through which the effect of climate change on farm households can be moderated. Finally, the results indicated over 90% of the small-holder farmers interviewed had no farm diversification adaptation strategies for climate change, and a little over 50% of the farmers owned unskilled or manual non-farm economic ventures. This makes it very difficult for the majority of the farmers to withstand climate-related shocks. These findings suggest that achieving the Sustainable Development Goal of Zero Hunger by 2030 needs an integrated approach, such as reducing the over-reliance on rainfed agriculture, educating farmers, and implementing non-farm interventions to improve food consumption in Ghana.Keywords: climate change, food consumption, Ghana, non-farm activity
Procedia PDF Downloads 434147 On Panel Data Analysis of Factors on Economic Advances in Some African Countries
Authors: Ayoola Femi J., Kayode Balogun
Abstract:
In some African Countries, increase in Gross Domestic Products (GDP) has not translated to real development as expected by common-man in his household. For decades, a lot of contests on economic growth and development has been a nagging issues. The focus of this study is to analysing the effects of economic determinants/factors on economic advances in some African Countries by employing panel data analysis. The yearly (1990-2013) data were obtained from the world economic outlook database of the International Monetary Fund (IMF), for probing the effects of these variables on growth rate in some selected African countries which include: Nigeria, Algeria, Angola, Benin, Botswana, Burundi, Cape-Verde, Cameroun, Central African Republic, Chad, Republic Of Congo, Cote di’ Voire, Egypt, Equatorial-Guinea, Ethiopia, Gabon, Ghana, Guinea Bissau, Kenya, Lesotho, Madagascar, Mali, Mauritius, Morocco, Mozambique, Niger, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, and Uganda. The effects of 6 macroeconomic variables on GDP were critically examined. We used 37 Countries GDP as our dependent variable and 6 independent variables used in this study include: Total Investment (totinv), Inflation (inf), Population (popl), current account balance (cab), volume of imports of goods and services (vimgs), and volume of exports of goods and services (vexgs). The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of this study would be useful for individual African governments for developing a suitable and appropriate economic policies and strategies. It will also help investors to understand the economic nature and viability of Africa as a continent as well as its individual countries.Keywords: African countries, economic growth and development, gross domestic products, static panel data models
Procedia PDF Downloads 47534146 Testing the Life Cycle Theory on the Capital Structure Dynamics of Trade-Off and Pecking Order Theories: A Case of Retail, Industrial and Mining Sectors
Authors: Freddy Munzhelele
Abstract:
Setting: the empirical research has shown that the life cycle theory has an impact on the firms’ financing decisions, particularly the dividend pay-outs. Accordingly, the life cycle theory posits that as a firm matures, it gets to a level and capacity where it distributes more cash as dividends. On the other hand, the young firms prioritise investment opportunities sets and their financing; thus, they pay little or no dividends. The research on firms’ financing decisions also demonstrated, among others, the adoption of trade-off and pecking order theories on the dynamics of firms capital structure. The trade-off theory talks to firms holding a favourable position regarding debt structures particularly as to the cost and benefits thereof; and pecking order is concerned with firms preferring a hierarchical order as to choosing financing sources. The case of life cycle hypothesis explaining the financial managers’ decisions as regards the firms’ capital structure dynamics appears to be an interesting link, yet this link has been neglected in corporate finance research. If this link is to be explored as an empirical research, the financial decision-making alternatives will be enhanced immensely, since no conclusive evidence has been found yet as to the dynamics of capital structure. Aim: the aim of this study is to examine the impact of life cycle theory on the capital structure dynamics trade-off and pecking order theories of firms listed in retail, industrial and mining sectors of the JSE. These sectors are among the key contributors to the GDP in the South African economy. Design and methodology: following the postpositivist research paradigm, the study is quantitative in nature and utilises secondary data obtainable from the financial statements of sampled firm for the period 2010 – 2022. The firms’ financial statements will be extracted from the IRESS database. Since the data will be in panel form, a combination of the static and dynamic panel data estimators will used to analyse data. The overall data analyses will be done using STATA program. Value add: this study directly investigates the link between the life cycle theory and the dynamics of capital structure decisions, particularly the trade-off and pecking order theories.Keywords: life cycle theory, trade-off theory, pecking order theory, capital structure, JSE listed firms
Procedia PDF Downloads 6034145 Effects of Financial Development on Economic Growth in South Asia
Authors: Anupam Das
Abstract:
Although financial liberalization has been one of the most important policy prescriptions of international organizations like the World Bank and the IMF, the effect of financial liberalization on economic growth in developing countries is far from unanimous. Since the '80s, South Asian countries made a significant development in liberalization the financial sector. However, due to unavailability of a sufficient number of time series observations, the relationship between economic growth and financial development has not been investigated adequately. We aim to fill this gap by examining time series data of five developing countries from the South Asian region: Bangladesh, India, Pakistan, Sri Lanka, and Nepal. Applying the cointegration tests and Granger causality within the vector error correction model (VECM), we do not find unanimous evidence of financial development on positive economic growth. These results are helpful for developing countries which have been trying to liberalize the financial sector in recent decades.Keywords: economic growth, financial development, Granger causality, South Asia
Procedia PDF Downloads 36934144 Critical Factors Boosting the Future Economy of Eritrea: An Empirical Approach
Authors: Biniam Tedros Kahsay, Yohannes Yebabe Tesfay
Abstract:
Eritrea is a country in the East of Africa. The country is a neighbor of Djibouti, Ethiopia, and Sudan and is bordered by the Red Sea. The country declared its independence from Ethiopia in 1993. Thus, Eritrea has a lot of commonalities with the Northern Part of Ethiopia's tradition, religion, and languages. Many economists suggested that Eritrea is in a very strategic position for world trade roots and has an impact on geopolitics. This study focused on identifying the most important factor in boosting the Eritrean Economy. The paper collected big secondary data from the World Bank, International Trade and Tariff Data (WTO), East African Community (EAC), Ethiopian Statistical Agency (ESA), and the National Statistics Office (Eritrea). Economists consider economic and population growth in determining trade belts in East Africa. One of the most important Trade Belt that will potentially boost the Eritrean economy is the root of Eritrea (Massawa)->Eritea, (Asmara)->Tigray, (Humora)->Tigray, (Dansha)-> Gondar-> Gojjam-> Benshangual Gumuz => {Oromia, South Sudan}->Uganda. The estimate showed that this is one of the biggest trade roots in East Africa and has a participation of more than 150 million people. We employed various econometric analyses to predict the GDP of Eritrea, considering the future trade belts in East Africa. The result showed that the economy of Eritrea from the Trade Belt will have an elasticity estimate of 65.87% of the GDP of Ethiopia, 3.32% of the GDP of South Sudan, and 0.09% of the GDP of Uganda. The result showed that the existence of war has an elasticity of -93% to the GDP of the country. Thus, if Eritrea wants to strengthen its economy from the East African Trade Belt, the country needs to permanently avoid war in the region. Essentially, the country needs to establish a collaborative platform with the Northern part of Ethiopia (Tigray). Thus, establishing a mutual relationship with Tigray will boost the Eritrean economy. In that regard, Eritrean scholars and policymakers need to work on establishing the East African Trade Belt to boost their economy.Keywords: Eritrea, east Africa trade belt, GDP, cointegration analysis, critical path analysis
Procedia PDF Downloads 5634143 Mimosa Tannin – Starch - Sugar Based Wood Adhesive
Authors: Salise Oktay, Nilgün Kizilcan, Başak Bengü
Abstract:
At present, formaldehyde based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine – urea formaldehyde (MUF), etc. are mostly used in wood based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde based wood adhesives are produced from non- renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood based panel industry requirements. In this study, as formaldehyde free adhesive, Mimosa tannin, starch, sugar based wood adhesivewas synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity, and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate the chemical structures of the cured adhesivesamples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in a laboratory scale, and mechanical, physical properties of the boards were investigated. Besides, the formaldehyde contents of the boards were determined by using the perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use wood based panel industry with some developments.Keywords: bio-based wood adhesives, mimosa tannin, corn starch, sugar, polycarboxyclic acid
Procedia PDF Downloads 23134142 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 30634141 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35234140 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow
Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya
Abstract:
Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.Keywords: acoustic metamaterials, noise, functional materials, ventilated
Procedia PDF Downloads 8034139 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity
Procedia PDF Downloads 31434138 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.Keywords: band selection, fuzzy c-means, k-means, hyperspectral image
Procedia PDF Downloads 40634137 Is the Okun's Law Valid in Tunisia?
Authors: El Andari Chifaa, Bouaziz Rached
Abstract:
The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters
Procedia PDF Downloads 315