Search results for: aerial imaging and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4900

Search results for: aerial imaging and detection

4660 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 152
4659 Evaluate the Changes in Stress Level Using Facial Thermal Imaging

Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian

Abstract:

This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.

Keywords: stress, thermal imaging, face, SVM, polygraph

Procedia PDF Downloads 486
4658 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 419
4657 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
4656 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 59
4655 Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles

Authors: I. McAndrew, K. L. Witcher, E. Navarro

Abstract:

This paper presents the theory and application of low-speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under-supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.

Keywords: aerodynamics, environmental influences, glide path ratio, unmanned vehicles

Procedia PDF Downloads 330
4654 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 134
4653 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
4652 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration

Authors: Amir Abdelqodus, Mario Shehata

Abstract:

The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.

Keywords: aerodynamics, CFD, potential flow, UAV, VTOL

Procedia PDF Downloads 445
4651 [Keynote Talk]: Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles

Authors: I. McAndrew, K. L. Witcher, E. Navarro

Abstract:

This paper presents the theory and application of low speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.

Keywords: aerodynamics, low speed flight, unmanned vehicles, environmental influences

Procedia PDF Downloads 437
4650 Phytochemical Screening, Antioxidant and Hepatoprotection Assessment of Extracts of Coriandrum sativm L. on Wistar Rats

Authors: Hiba T. Allah ALtieb Gusm ALsied, Amna Beshir Medani Ahmed, Ikram Mohamed ELtayeb, Saad Mohamed Hussein Ayoub

Abstract:

This study was carried out to determine the hepatoactivity and the antioxidant activity of Coiradrum sativum L. aerial part and fruit extracts against CCL4 induced acute liver damages in Wistar rats. The aerial parts and fruits part of the plant were extracted 96% ethanol with soxhlet apparatus. Hepatic injury was achieved by subcutaneous injection of 3 ml/kg of CCL4 diluted with olive oil with ratio 1:1. The extracts were mixed together 1:1 ratio and given in different doses 100,200,400 mg/kg/day for 5 days under CCL4 induction at 3rd day. The significance of differences between means by using T-test was compared among the groups. The mixture of the two extracts didn’t show any significant result in protecting liver injury (antagonistic effects), it shows high level of liver enzyme like alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (SGOT) and glutamate pyruvate transaminase (SGPT). Serological studies further confirmed the results. The results obtained were compared with silymarin (70 mg/kg/day) orally, the standard drug for hepatoprotection which show recovery close to normalization almost like that of silymarin; therefore, further studies on this plant with different ratios especially in isolated tissue to spot more light on antagonistic effects of the two extracts. Antioxidant activity of the extracts was determined by the DPPH method. The results obtained show high anti-oxidant activity for fruits extract while slight or moderate antioxidant activity to aerial extracts.

Keywords: antioxidant, aerial part, Coriadrum sativum L., fruity, hepatoprotection, Silymarin, phytochemical screening

Procedia PDF Downloads 489
4649 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 228
4648 Design of a New Architecture of IDS Called BiIDS (IDS Based on Two Principles of Detection)

Authors: Yousef Farhaoui

Abstract:

An IDS is a tool which is used to improve the level of security.In this paper we present different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection).

Keywords: intrusion detection, architectures, characteristic, tools, security

Procedia PDF Downloads 462
4647 Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity

Authors: Xin Wang, Munkbayar Munkhjargal, Kumiko Miyajima, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-).

Keywords: breath ethanol, ethnaol imaging, biochemical luminescence, alcohol metabolism

Procedia PDF Downloads 351
4646 Isolated Hydatidosis of Spleen: A Rare Entity

Authors: Anshul Raja

Abstract:

Cystic lesions of the spleen are rare and splenic hydatid cysts account for only 0.5% to 8% of all hydatidosis. Authors hereby report a case where a 50-year-old female presented to our hospital with the complains of heaviness and pain over left upper abdomen over the past 8-10 years. On radiological examination, ultrasonography revealed findings consistent with isolated splenic hydatid cyst and was later on confirmed on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). No other organ or system involvement was seen. The patient underwent splenectomy and hydatid cyst was confirmed on histopathology. Owing to its rarity, it offers a diagnostic challenge to physicians but can reliably be diagnosed with great confidence employing various imaging modalities like CT and MRI.

Keywords: gastrointestinal radiology, abdominal imaging, hydatid cyst, medical and health sciences

Procedia PDF Downloads 405
4645 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
4644 Antioxidant Activity of Aristolochia longa L. Extracts

Authors: Merouani Nawel, Belhattab Rachid

Abstract:

Aristolochia longa L. (Aristolochiacea) is a native plant of Algeria used in traditional medicine. This study was devoted to the determination of polyphenols, flavonoids, and condensed tannins contents of Aristolochia longa L. after their extraction by using various solvents with different polarities (methanol, acetone and distilled water). These extracts were prepared from stem, leaves, fruits and rhizome. The antioxidant activity was determined using three in vitro assays methods: scavenging effect on DPPH, the reducing power assay and ẞ-carotene bleaching inhibition (CBI). The results obtained indicate that the acetone extracts from the aerial parts presented the highest contents of polyphenols. The results of The antioxidant activity showed that all extracts of Aristolochia longa L., prepared using different solvent, have diverse antioxidant capacities. However, the aerial parts methanol extract exhibited the highest antioxidant capacity of DPPH and reducing power (Respectively 55,04ug/ml±1,29 and 0,2 mg/ml±0,019 ). Nevertheless, the aerial parts acetone extract showed the highest antioxidant capacity in the test of ẞ-carotene bleaching inhibition with 57%. These preliminary results could be used to justify the traditional use of this plant and their bioactive substances could be exploited for therapeutic purposes such as antioxidant and antimicrobial.

Keywords: aristolochia longa l., polyphenols, flavonoids, condensed tannins, antioxidant activity

Procedia PDF Downloads 251
4643 Crater Detection Using PCA from Captured CMOS Camera Data

Authors: Tatsuya Takino, Izuru Nomura, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of detecting the craters from the image of the lunar surface. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) working group aiming at the pinpoint landing on the lunar surface and investigating scientific research. It is difficult to equip and use high-performance computers for the small space probe. So, it is necessary to use a small computer with an exclusive hardware such as FPGA. We have studied the crater detection using principal component analysis (PCA), In this paper, We implement detection algorithm into the FPGA, and the detection is performed on the data that was captured from the CMOS camera.

Keywords: crater detection, PCA, FPGA, image processing

Procedia PDF Downloads 550
4642 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 83
4641 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach

Authors: Jorge R. Santos, Pedro Sebastiao

Abstract:

In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.

Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js

Procedia PDF Downloads 148
4640 Design and Analysis of Solar Powered Plane

Authors: Malarvizhi, Venkatesan

Abstract:

This paper summarizes about the design and optimization of solar powered unmanned aerial vehicle. The purpose of this research is to increase the range and endurance. It can be used for environmental research, aerial photography, search and rescue mission and surveillance in other planets. The ultimate aim of this research is to design and analyze the solar powered plane in order to detect lift, drag and other parameters by using cfd analysis. Similarly the numerical investigation has been done to compare the results of earth’s atmosphere to the mars atmosphere. This is the approach made to check whether the solar powered plane is possible to glide in the planet mars by using renewable energy (i.e., solar energy).

Keywords: optimization, range, endurance, surveillance, lift and drag parameters

Procedia PDF Downloads 460
4639 A Remotely Piloted Aerial Application System to Control Rangeland Grasshoppers

Authors: Daniel Martin, Roberto Rodriguez, Derek Woller, Chris Reuter, Lonnie Black, Mohamed Latheef

Abstract:

The grasshoppers comprised of heterogeneous assemblages of Acrididae (Family: Orthoptera) species periodically reach outbreak levels by their gregarious behavior and voracious feeding habits, devouring stems and leaves of food crops and rangeland pasture. Cattle consume about 1.5-2.5% of their body weight in forage per day, so pound for pound, a grasshopper will eat 12-20 times as much plant material as a steer and cause serious economic damage to the cattle industry, especially during a drought when forage is already scarce. Grasshoppers annually consume more than 20% of rangeland forages in the western United States at an estimated loss of $1.25 billion per year in forage. A remotely piloted aerial application system with both a spreader and spray application system was used to apply granular insect bait and a liquid formulation of Carbaryl for control of grasshopper infestations on rangeland in New Mexico, United States. Pattern testing and calibration of both the granular and liquid application systems were conducted to determine proper application rate set up and distribution pattern. From these tests, an effective swath was calculated. Results showed that 14 days after application, granular baits were only effective on those grasshopper species that accepted the baits. The liquid formulation at 16 ounces per acre was highly successful at controlling all grasshopper species. Results of this study indicated that a remotely piloted aerial application system can be used to effectively deliver grasshopper control products in both granular and liquid form. However, the spray application treatment proved to be most effective and efficient for all grasshopper species present.

Keywords: Carbaryl, Grasshopper, Insecticidal Efficacy, Remotely Piloted Aerial Application System

Procedia PDF Downloads 219
4638 A Paper Based Sensor for Mercury Ion Detection

Authors: Emine G. Cansu Ergun

Abstract:

Conjugated system based sensors for selective detection of metal ions have been taking attention during last two decades. Fluorescent sensors are the promising candidates for ion detection due to their high selectivity towards metal ions, and rapid response times. Detection of mercury in an environmenet is important since mercury is a toxic element for human. Beyond the maximum allowable limit, mercury may cause serious problems in human health by spreading into the atmosphere, water and the food chain. In this study, a quinoxaline and 3,4-ethylenedioxy thiophene based donor-acceptor-donor type conjugated molecule used as a fluorescent sensor for detecting the mercury ion in aqueous medium. Among other various cations, existence of mercury resulted in a full quenching of the fluorescence signal. Then, a paper based sensor is constructed and used for mercury detection. As a result it is concluded that the offering sensor is a good candidate for selective mercury detection in aqueous media both in solution and paper based forms.

Keywords: Conjugated molecules , fluorescence quenching, metal ion detection , sensors

Procedia PDF Downloads 159
4637 Micro-CT Imaging Of Hard Tissues

Authors: Amir Davood Elmi

Abstract:

From the earliest light microscope to the most innovative X-ray imaging techniques, all of them have refined and improved our knowledge about the organization and composition of living tissues. The old techniques are time consuming and ultimately destructive to the tissues under the examination. In recent few decades, thanks to the boost of technology, non-destructive visualization techniques, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), selective plane illumination microscopy (SPIM), and optical projection tomography (OPT), have come to the forefront. Among these techniques, CT is excellent for mineralized tissues such as bone or dentine. In addition, CT it is faster than other aforementioned techniques and the sample remains intact. In this article, applications, advantages, and limitations of micro-CT is discussed, in addition to some information about micro-CT of soft tissue.

Keywords: Micro-CT, hard tissue, bone, attenuation coefficient, rapid prototyping

Procedia PDF Downloads 142
4636 Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging

Authors: Lukáš Klein, Karel Žídek

Abstract:

Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio.

Keywords: compressive imaging, hyperspectral imaging, near-infrared spectrum, single-pixel camera, visible spectrum

Procedia PDF Downloads 89
4635 Automated Pothole Detection Using Convolution Neural Networks and 3D Reconstruction Using Stereovision

Authors: Eshta Ranyal, Kamal Jain, Vikrant Ranyal

Abstract:

Potholes are a severe threat to road safety and a major contributing factor towards road distress. In the Indian context, they are a major road hazard. Timely detection of potholes and subsequent repair can prevent the roads from deteriorating. To facilitate the roadway authorities in the timely detection and repair of potholes, we propose a pothole detection methodology using convolutional neural networks. The YOLOv3 model is used as it is fast and accurate in comparison to other state-of-the-art models. You only look once v3 (YOLOv3) is a state-of-the-art, real-time object detection system that features multi-scale detection. A mean average precision(mAP) of 73% was obtained on a training dataset of 200 images. The dataset was then increased to 500 images, resulting in an increase in mAP. We further calculated the depth of the potholes using stereoscopic vision by reconstruction of 3D potholes. This enables calculating pothole volume, its extent, which can then be used to evaluate the pothole severity as low, moderate, high.

Keywords: CNN, pothole detection, pothole severity, YOLO, stereovision

Procedia PDF Downloads 136
4634 Cross Site Scripting (XSS) Attack and Automatic Detection Technology Research

Authors: Tao Feng, Wei-Wei Zhang, Chang-Ming Ding

Abstract:

Cross-site scripting (XSS) is one of the most popular WEB Attacking methods at present, and also one of the most risky web attacks. Because of the population of JavaScript, the scene of the cross site scripting attack is also gradually expanded. However, since the web application developers tend to only focus on functional testing and lack the awareness of the XSS, which has made the on-line web projects exist many XSS vulnerabilities. In this paper, different various techniques of XSS attack are analyzed, and a method automatically to detect it is proposed. It is easy to check the results of vulnerability detection when running it as a plug-in.

Keywords: XSS, no target attack platform, automatic detection,XSS detection

Procedia PDF Downloads 403
4633 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 349
4632 Clinical and Radiological Outcome in 300 Patients with Non-Aneurysmal Sah

Authors: Ranjith Menon, Abathar Aladi, Hans-Christean Nahser, Maneesh Bhojak, Sacha Nevin, Paul Eldridge

Abstract:

Background: Spontaneous subarachnoid haemorrhage (SAH) accounts for approximately 5% of all strokes. Patients with spontaneous SAH (as shown by CT or lumbar puncture) undergo investigations to identify or exclude an underlying structural cause, typically cerebral aneurysm. However in 10 - 20% of cases, no structural cause is found. This includes more than one imaging modality (intracranial MRA, CTA, 4DCTA and/or DSA) and in some spinal MRI. Objective: To determine; 1) If an underlying structural or vascular cause can be identified in non-aneurysmal SAH patients by comparing different imaging modalities at presentation and at follow-up. 2) If MRI spine in patients with non-aneurysmal SAH reveals an underlying SAH cause. 3)The functional outcome at discharge. Results: We performed a retrospective analysis of all non-traumatic SAH patients admitted to the Walton centre from January 2009 to December 2015. There were 1457 patients with non-traumatic SAH admitted to the Walton centre of whom 21.8% (n=300) patients were diagnosed with non-aneurysmal SAH. Males were 65.6% and females were 43.3%. The presenting symptoms were sudden onset headache (93.6%), the focal neurological deficit (12%), loss of consciousness (10.6%) and others (6%). About 285 patients received 2 modalities of imaging (CTA & DSA), 192 received 3 modalities of imaging (CTA, MRA & DSA) and 137 received MRI spine (51/137 whole spine). The modified Rankin Score at discharge were: mRS 0 = 292 (97.33%), mRS 1-2 = 6, mRS 6 = 1 (cardiac arrest in IHD patient) and unknown in 1. Follow-up imaging at 3 to 6 months in 190 (63.3%) patients did not identify an underlying cause. Conclusion: This retrospective analysis concludes that non-aneurysmal SAH has a good functional outcome. A single imaging modality (CTA (4DCTA) or MRA or DSA) was adequate to exclude an underlying cause of SAH and a delayed imaging failed to identify a cause. Routinely performing MRI spine in this group of patients appears not to be necessary according to this evidence.

Keywords: stroke, non-aneurysmal subarachnoid haemorrhage, neuroimaging, modified rankin score

Procedia PDF Downloads 268
4631 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 181