Search results for: Gaussian random weight initialization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6206

Search results for: Gaussian random weight initialization

5966 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 511
5965 Sound Exposure Effects towards Ross Broilers Growth Rate

Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak

Abstract:

Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39). Group B showed a higher mean weight on Day 24 (1.441±0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p< 0.05). However, there was no significant (p> 0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.

Keywords: broilers, sound, shear force, weight

Procedia PDF Downloads 422
5964 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 392
5963 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 158
5962 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights

Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu

Abstract:

Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.

Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network

Procedia PDF Downloads 278
5961 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 121
5960 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 194
5959 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: synthetic collateralized debt obligation (CDO), credit default swap (CDS), cash flow optimization, probability of default, default correlation, strategies, simulation, simplex

Procedia PDF Downloads 278
5958 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 53
5957 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 231
5956 The Growth Curve of Gompertz Model in Body Weight of Slovak Mixed-Sex Goose Breeds

Authors: Cyril Hrncar, Jozef Bujko, Widya P. B. Putra

Abstract:

The growth curve of poultry is important to evaluate the farming management system. This study was aimed to estimate the growth curve of body weight in goose. The growth curve in this study was estimated with non-linear Gompertz model through CurveExpert 1.4. software. Three Slovak mixed-sex goose breeds of Landes (L), Pomeranian (P) and Steinbacher (S) were used in this study. Total of 28 geese (10 L, 8 P and 10 S) were used to estimate the growth curve. Research showed that the asymptotic weight (A) in those geese were reached of 5332.51 g (L), 6186.14 g (P) and 5048.27 g (S). Thus, the maturing rate (k) in each breed were similar (0.05 g/day). The weight of inflection was reached of 1960.48 g (L), 2274.32 g (P) and 1855.98 g (S). The time of inflection (ti) was reached of 25.6 days (L), 26.2 days (P) and 27.80 days (S). The maximum growth rate (MGR) was reached of 98.02 g/day (L), 113.72 g/day (P) and 92.80 g/day (S). Hence, the coefficient of determination (R2) in Gompertz model was 0.99 for each breed. It can be concluded that Pomeranian geese had highest of growth trait than the other breeds.

Keywords: body weight, growth curve, inflection, Slovak geese, Gompertz model

Procedia PDF Downloads 151
5955 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer

Procedia PDF Downloads 374
5954 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 350
5953 Correlation of Hyperlipidemia with Platelet Parameters in Blood Donors

Authors: S. Nishat Fatima Rizvi, Tulika Chandra, Abbas Ali Mahdi, Devisha Agarwal

Abstract:

Introduction: Blood components are an unexplored area prone to numerous discoveries which influence patient’s care. Experiments at different levels will further change the present concept of blood banking. Hyperlipidemia is a condition of elevated plasma level of low-density lipoprotein (LDL) as well as decreased plasma level of high-density lipoprotein (HDL). Studies show that platelets play a vital role in the progression of atherosclerosis and thrombosis, a major cause of death worldwide. They are activated by many triggers like elevated LDL in the blood resulting in aggregation and formation of plaques. Hyperlipidemic platelets are frequently transfused to patients with various disorders. Screening the random donor platelets for hyperlipidemia and correlating the condition with other donor criteria such as lipid rich diet, oral contraceptive pills intake, weight, alcohol intake, smoking, sedentary lifestyle, family history of heart diseases will lead to further deciding the exclusion criteria for donor selection. This will help in making the patients safe as well as the donor deferral criteria more stringent to improve the quality of blood supply. Technical evaluation and assessment will enable blood bankers to supply safe blood and improve the guidelines for blood safety. Thus, we try to study the correlation between hyperlipidemic platelets with platelets parameters, weight, and specific history of the donors. Methodology: This case control study included 100 blood samples of Blood donors, out of 100 only 30 samples were found to be hyperlipidemic and were included as cases, while rest were taken as controls. Lipid Profile were measured by fully automated analyzer (TRIGL:triglycerides),(LDL-C:LDL –Cholesterol plus 2nd generation),CHOL 2: Cholesterol Gen 2), HDL C 3: HDL-Cholesterol plus 3rdgeneration)-(Cobas C311-Roche Diagnostic).And Platelets parameters were analyzed by the Sysmex KX21 automated hematology analyzer. Results: A significant correlation was found amongst hyperlipidemic level in single time donor. In which 80% donors have history of heart disease, 66.66% donors have sedentary life style, 83.3% donors were smokers, 50% donors were alcoholic, and 63.33% donors had taken lipid rich diet. Active physical activity was found amongst 40% donors. We divided donors sample in two groups based on their body weight. In group 1, hyperlipidemic samples: Platelet Parameters were 75% in normal 25% abnormal in >70Kg weight while in 50-70Kg weight 90% were normal 10% were abnormal. In-group 2, Non Hyperlipidemic samples: platelet Parameters were 95% normal and 5% abnormal in >70Kg weight, while in 50-70Kg Weight, 66.66% normal and 33.33% abnormal. Conclusion: The findings indicate that Hyperlipidemic status of donors may affect the platelet parameters and can be distinguished on history by their weight, Smoking, Alcoholic intake, Sedentary lifestyle, Active physical activity, Lipid rich diet, Oral contraceptive pills intake, and Family history of heart disease. However further studies on a large sample size will affirm this finding.

Keywords: blood donors, hyperlipidemia, platelet, weight

Procedia PDF Downloads 316
5952 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 92
5951 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 149
5950 Unsupervised Approaches for Traffic Sign Image Segmentation in Autonomous Driving

Authors: B. Vishnupriya, R. Josphineleela

Abstract:

Road sign recognition is a key element in advanced driver-assistance systems (ADAS) and self-driving technologies, as it is fundamental to maintaining safe and effective navigation. Conventional supervised learning approaches rely heavily on extensive labeled datasets for training, which can be resource-intensive and challenging to obtain. This study examines the effectiveness of three unsupervised image segmentation approaches—K- means clustering, GrabCut, and Gaussian Mixture Model (GMM)—in detecting road signs within complex settings. Using a publicly available Road Sign dataset from Kaggle, we assess the effectiveness of these methods based on clustering performance metrics. Our results indicate that GMM achieves the highest performance across these metrics, demonstrating superior segmentation accuracy under diverse lighting and weather conditions, followed by GrabCut and K-means clustering. This research highlights the potential of unsupervised techniques in reducing the dependency on labeled data, offering insights for future advancements in road sign detection systems for ADAS and autonomous vehicles.

Keywords: K-means clustering, unsupervised, Gaussian Mixture Model, segmentation accuracy

Procedia PDF Downloads 12
5949 The Influence of Cage versus Floor Pen Management of Broilers

Authors: Hanan Al-Khalifa

Abstract:

There has been an interest in raising poultry in environmentally controlled cages rather than on floor, because poultry raised on floor are more susceptible to environmental stress including pathogens and heat stress. A study was conducted to investigate the effect of managerial environmental conditions on body weight gain of Cobb 500 broiler breed. Broilers were raised in cages and on floor in two separate rooms. Body weight at different ages of the broilers was monitored. It was found that body weight at slaughter age (5weeks) for boilers raised in batteries were significantly higher than those raised on the floor.

Keywords: broilers, cages, floor, poultry

Procedia PDF Downloads 420
5948 Random Walks and Option Pricing for European and American Options

Authors: Guillaume Leduc

Abstract:

In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence.

Keywords: random walk approximation, European and American options, rate of convergence, option pricing

Procedia PDF Downloads 467
5947 Changes in Some Morphological Characters of Dill Under Cadmium Stress

Authors: A. M. Daneshian Moghaddam, A. H. Hosseinzadeh, A. Bandehagh

Abstract:

To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height.

Keywords: pollution, essential oil, ecotype, dill, heavy metals, cadmium

Procedia PDF Downloads 432
5946 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 224
5945 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 121
5944 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 237
5943 Effects of Aromatase Inhibitor (Fadrozole) Induced Sex-Reversal in Chicken (Gimmizah strain) on Morphology

Authors: Hatem Shreha

Abstract:

Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens (phenotypic male). To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor on the morphology of female sex-reversed and female sex-reversed supplemented with L-tyrosine which was previously shown to stimulate the release of Gn Rh. Fadrozole (1mg/egg) was injected into eggs on day four of incubation, phenotypic males and phenotypic males treated with L-tyrosine and males hatched from eggs injected Fadrozole were sacrificed by slaughtering at 16 weeks old and the remaining chicks were sacrificed at 28 weeks old. Both sexes from control chickens were sacrificed at the same age (16 &28 weeks). Hatchability, behavior, body weight, shank length, comb weight, testes weight, blood cells count and wattle weight of sex reversal were tested at 16 and 28 weeks. The results showed that body weight, comb weight, wattles weight and shank length of sex-reversed females were significantly different from control female. Behavior of phenotypic males and phenotypic males fed on L- tyrosine showed aggressive sexual behavior like that of control males and absence of laying behavior. In conclusion our results confirm that Fedrazole injection in eggs before sex differentiation produce a male behavior and morphological index of male in female chicken.

Keywords: sex reversal, fadrozole, phenotypic male, L- tyrosine

Procedia PDF Downloads 614
5942 Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms

Authors: M. Ghasemi-Varnamkhasti, S. H. Yoosefian. A. Mohammad- Razdari

Abstract:

The effect of 1.0 kJ/m2 Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (Agaricus bisporus) tissues during 21-days storage at 4 ºC was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m2 UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms.

Keywords: mushroom, polyethylene film, quality, UV-c irradiation

Procedia PDF Downloads 298
5941 Maintaining Healthy Body Weight: Beyond Exercise Routines

Authors: Nahwera L., Constance A. N. Nsibamb, Mukana R., Daniel T. Goon

Abstract:

Regular physical activity is a cornerstone of maintaining good health. Studies have shown that physical inactivity leads to overweight and obesity, a risk factor for non-communicable diseases and a public health challenge. Health clubs provide therapeutic exercises to clients desiring to reduce their weight; however, the exercise routines offered in these health clubs are insufficient to reduce their body weight. A convenient sample of 100 clients. Exercise routines were determined using a questionnaire. Height, weight, waist, and hip circumferences were measured. Body mass index (BMI), waist circumference, and waist-to-hip ratio (WHR) assessed body weight status. About 75% of clients exercised three or more times per week; 96% participated in modern intensity exercises for 30 minutes, aerobic dance (88%), treadmill (56%), cycling (51%), rope skipping (45%), and 14% in strengthening activities. The BMI of male and female clients was 64.2% and 83.0%, respectively. There was no significant correlation (p≤0.05) between BMI and WHR (p=0.336), although there was a significant correlation between BMI and waist circumference (p=0.000). There was no significant relationship between BMI and WHR for males (p= .336) and between BMI and WHR for females (p=.806). Although most clients visiting health clubs meet the recommended frequency, intensity, and duration of exercise, they are overweight and obese. Appropriate exercise and nutritional programs should be incorporated into health clubs offering therapeutic and rehabilitative exercises to clients.

Keywords: Body weight status, exercise routines, health clubs, exercises

Procedia PDF Downloads 92
5940 Effect of Aerobics Exercise on the Patient with Anxiety Disorder

Authors: Ahmed A. Abd El Rahim, Andrew Anis Fakhrey Mosaad

Abstract:

Background: An important psychological issue that has an impact on both mental and physical function is anxiety disorders. The general consensus is that aerobic exercise and physical activity are good for lowering anxiety and mood. Purpose: This study's goal was to look into how patients with anxiety disorders responded to aerobic exercise. Subjects: Anxiety disorders were identified in 30 individuals from the psychiatric hospital at Sohag University who were chosen based on inclusive criteria and had ages ranging from 25 to 45. Methods: Patients were split into two equal groups at random: For four weeks, three sessions per week, fifteen patients in group A (the study group), seven men and eight women, underwent medication therapy and aerobic exercise. Age (28.4 ± 2.11 years), weight (72.5 ± 10.06 kg), height (164.8 ± 9.64 cm), and BMI (26.65 ± 2.68 kg/m2) were all mean SD values. And in Group B (Control Group), only medication therapy was administered to 15 patients (9 males and 6 females). Age (29.6 ± 3.68), weight (75 ± 7.07 kg), height (166.9 ± 6.75) cm, and BMI (26.87 ± 1.11) kg/m2 were the mean SD values. Before and after the treatment, the Hamilton Anxiety Scale was used to gauge the patient's degree of anxiety. Results: Within the two groups, there were significant differences both before and after the treatment. Following therapy, there was a significant difference between the two groups; the study group displayed better improvement on the Hamilton Anxiety Scale. Conclusion: Patients with anxiety problems can benefit from aerobic activities and antianxiety drugs as effective treatments for lowering anxiety levels.

Keywords: aerobic exercises, anxiety disorders, antianxiety medications, Hamilton anxiety scale

Procedia PDF Downloads 87
5939 The Efferent of Different Levels of Recycled Soybean Oil(RSO) on Growth and Performance of Broilers

Authors: Seyed Babak Asadi

Abstract:

In this experiment the effect of recycled soybean oil (RSO) on the growth and performance carcass of broiler was investigated. The percentages of recycled soybean oil (RSO) used in this experiment were 0, 2, 4, 6 and 8. In this regard, 300 one-day-old broilers were selected randomly consisting of five treatments and three replicates(20 chickens per replicate). The chicks were kept in an accumulated manner for the first week, then divided between treatments and kept until they reached the age of 42 days. Body weight at 21 and 42, weight gain, food intake and food conversion ratio in starter (0-21 d), finisher (21-42 d) and overall were measured. At the end of the experiment (42 days-old) 2 chicks from each replicate which had the nearest weight to the average group in their group were selected, slaughtered and different parts of their carcass were weight separately. The result showed that the rate of feed intake and feed conversion coefficient have significantly increased with higher levels of recycled soybean oil. There was not a significant different between experimental groups for liver, heart, intestine and the weight of carcass. Results from this experiment showed that it is possible to use recycled soybean oil for up to 8 percent of food ration for broiler chicks without any significant effects on carcass quality.

Keywords: broiler, recycled soybean oil (RSO), growth, performance

Procedia PDF Downloads 409
5938 Correction Factor to Enhance the Non-Standard Hammer Effect Used in Standard Penetration Test

Authors: Khaled R. Khater

Abstract:

The weight of the SPT hammer is standard (0.623kN). The locally manufacturer drilling rigs use hammers, sometimes deviating off the standard weight. This affects the field measured blow counts (Nf) consequentially, affecting most of correlations previously obtained, as they were obtained based on standard hammer weight. The literature presents energy corrections factor (η2) to be applied to the SPT total input energy. This research investigates the effect of the hammer weight variation, as a single parameter, on the field measured blow counts (Nf). The outcome is a correction factor (ηk), equation, and correction chart. They are recommended to adjust back the measured misleading (Nf) to the standard one as if the standard hammer is used. This correction is very important to be done in such cases where a non-standard hammer is being used because the bore logs in any geotechnical report should contain true and representative values (Nf), let alone the long records of correlations, already in hand. The study here-in is achieved by using laboratory physical model to simulate the SPT dripping hammer mechanism. It is designed to allow different hammer weights to be used. Also, it is manufactured to avoid and eliminate the energy loss sources. This produces a transmitted efficiency up to 100%.

Keywords: correction factors, hammer weight, physical model, standard penetration test

Procedia PDF Downloads 390
5937 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 104