Search results for: testing techniques
6789 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser
Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen
Abstract:
Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator
Procedia PDF Downloads 2516788 Health and Subjective Wellbeing: The Role of Inequalities
Authors: Francesco Colcerasa, Fabio Pisani
Abstract:
We contribute to the subjective well-being literature testing the relationship between life satisfaction and inequality of opportunity in health, measured through the Human Opportunity Index calculated at the national level using individual socio-economic data from the cross-country European Social Survey sample. We compute several indexes of opportunity inequality in health, each obtained according to a different combination of circumstances (gender, immigrant status, parents’ education). We find a robust and significant relationship where life satisfaction is higher in correspondence with low levels of health opportunity inequality. The result is twofold. On the one hand, the importance of the well-being of other types of inequality than income inequality emerges. On the other hand, the socioeconomic roots of inequality in health are investigated, suggesting that circumstances at birth have a role in future well-being. Several rationales for the nexus between life satisfaction and inequality of opportunity in health are possible, which we investigate by splitting the sample. Among others, we find a prominent role of pro-social preferences – formalized as interest towards own offspring (which can be interpreted as intergenerational justice) – as a mediating factor of the relationship.Keywords: Inequality of opportunity, subjective wellbeing, health, health inequality, inequality of opportunity in health
Procedia PDF Downloads 846787 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms
Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli
Abstract:
In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding
Procedia PDF Downloads 2866786 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data
Authors: Adrian Priceputu, Elena Mihaela Stan
Abstract:
Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations
Procedia PDF Downloads 546785 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 4286784 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview
Authors: Syed Ali Shahbaz Shah
Abstract:
In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.Keywords: asphaltic roads, asphalt binder, distress, raveling
Procedia PDF Downloads 1166783 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique
Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François
Abstract:
Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus
Procedia PDF Downloads 3636782 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing
Authors: McClain Thiel
Abstract:
Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.Keywords: monocular distancing, computer vision, facial analysis, 3D localization
Procedia PDF Downloads 1396781 Analysis of Exponential Distribution under Step Stress Partially Accelerated Life Testing Plan Using Adaptive Type-I Hybrid Progressive Censoring Schemes with Competing Risks Data
Authors: Ahmadur Rahman, Showkat Ahmad Lone, Ariful Islam
Abstract:
In this article, we have estimated the parameters for the failure times of units based on the sampling technique adaptive type-I progressive hybrid censoring under the step-stress partially accelerated life tests for competing risk. The failure times of the units are assumed to follow an exponential distribution. Maximum likelihood estimation technique is used to estimate the unknown parameters of the distribution and tampered coefficient. Confidence interval also obtained for the parameters. A simulation study is performed by using Monte Carlo Simulation method to check the authenticity of the model and its assumptions.Keywords: adaptive type-I hybrid progressive censoring, competing risks, exponential distribution, simulation, step-stress partially accelerated life tests
Procedia PDF Downloads 3436780 Flexible Technologies of Granulated Complex Fertilizers
Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy
Abstract:
The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).Keywords: ammoniator-granulator drier drum, phosphorus-containing fertilizer technology, PK, PKS and NPKS-fertilizers, WPA
Procedia PDF Downloads 2046779 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 196778 Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique
Authors: Khalid Abdullah Alshuhail, Syrif Junidi, Ideisan Abu-Abdoum, Abdulsalam Aldawoud
Abstract:
For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings.Keywords: building material, continious monitoring, orientation, wall, temprature
Procedia PDF Downloads 1246777 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 2976776 A Systematic Review on Assistive Technology Robotics in Lower and Middle-Income Settings
Authors: Sumudu Sameera Perera Kimmantudawage, Chapal Khasnabis
Abstract:
Technology is changing at a rapid rate, with innovations in robotics being hailed and tested in countries such as Japan, the United States and Australia, however the conversation in a public health context is stagnant. While obvious barriers to robotics use in low and middle-income countries and regions exist, the avoidance of attempting to address these regions of the world may potentially lead to an ever-increasing divide between those of high income countries and those of less. A systematic review was undertaken to determine the number of projects involving research, development and testing of robotics considered low and middle-income regions. Major findings indicate that an overwhelmingly significant number of projects failed to consider low and middle-income countries or regions. These results are unsurprising however alarming, as bridging the divide is an important step forward in achieving the UN Sustainable Development Goals by 2030. It is hoped that this research would spawn future robotics research that focusses on lower and middle-income regions.Keywords: assistive technology, health equality, robotics, socioeconomic
Procedia PDF Downloads 2356775 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization
Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson
Abstract:
The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.Keywords: attenuation, infrared, multiphase, spectroscopy
Procedia PDF Downloads 3686774 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning
Procedia PDF Downloads 1326773 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application
Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul
Abstract:
A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability
Procedia PDF Downloads 1226772 Applications for Tracking Close Contact with COVID-19 Patients in Malaysia
Authors: Bih Ni Lee
Abstract:
This paper discusses the unending coronavirus (Covid-19) pandemic. The activity of detecting, testing those with symptoms, and isolating their contacts is the most effective method of stopping the chain of coronavirus infection. The number of cases of coronavirus continues to increase with some reporting a cure, but not a few die. Efforts to treat and prevent continue to fight COVID-19 with flu-like symptoms. The importance of the study is to identify smartphone applications that can track the movement of individuals in an effort to curb the spread of COVID-19, especially in Malaysia. This research method used a literature review, which included new insights into the quality of action and scientific papers. It synthesized information gleaned from a variety of sources. The findings of the study are that the Government of Malaysia has launched three main applications to track the movement of individuals, namely Gerak Malaysia, MyTrace, MySejahtera. Similarly, every state in Malaysia has its own state government application to track individual movements. Overall, Malaysia is one of the countries in the world that has successfully curbed the spread of COVID-19; Covid-19 cases in Malaysia are under control.Keywords: COVID-19 app, national security council, Gerak Malaysia, MyTrace, MySejahtera
Procedia PDF Downloads 1326771 An Investigation on Interface Shear Resistance of Twinwall Units for Tank Structures
Authors: Jaylina Rana, Chanakya Arya, John Stehle
Abstract:
Hybrid precast twinwall concrete units, mainly used in basement, core and crosswall construction, are now being adopted in water retaining tank structures. Their use offers many advantages compared with conventional in-situ concrete alternatives, however, the design could be optimised further via a deeper understanding of the unique load transfer mechanisms in the system. In the tank application, twinwall units, which consist of two precast concrete biscuits connected by steel lattices and in-situ concrete core, are subject to bending. Uncertainties about the degree of composite action between the precast biscuits and hence flexural performance of the units necessitated laboratory tests to investigate the interface shear resistance. Testing was also required to assess both the leakage performance and buildability of a variety of joint details. This paper describes some aspects of this novel approach to the design/construction of tank structures as well as selected results from some of the tests that were carried out.Keywords: hybrid construction, twinwall, precast construction, composite action
Procedia PDF Downloads 4826770 The Impact of Instructing Interpretation Specific Strategies on Interpretation Performance of Undergraduate Translation Students
Authors: Abolfazl Ghelichi, Ghasem Modarresi
Abstract:
The problem with interpretation courses arises from the fact that Interpretation Courses at University levels are presented by most of the instructors based on listening activities and testing listening performance while interpretation strategies have been underrated. The data are gathered from30 students majoring in Translation Studies to fulfill the major aims of the study including. The study aimed at: 1) examining the significant relationship between specific interpretation strategies and interpretation performance of translation students in interpretation courses, 2) investigating the significant difference between males and females in their interpretation performance, and 3) exploring the interpretation strategies which are more effective for the translation students to improve their interpretation performance from students’ opinions. The results of the study revealed that there was a statistically significant difference in the mean scores for the two groups. The experimental group outperformed the control group in their interpretation performance and the effect size was large. However, there was no significant difference between male and female with respect to their cognition [t (28) =.79, p<.05]. As for the results obtained from the interviews with the students, the commonalities emerged from the students’ responses were analyzed and reported by the researchers.Keywords: anticipation, interpretation performance, interpretation strategy, shadowing
Procedia PDF Downloads 2926769 Effect of Treated Peat Soil on the Plasticity Index and Hardening Time
Authors: Siti Nur Aida Mario, Farah Hafifee Ahmad, Rudy Tawie
Abstract:
Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry.Keywords: additives, hardening, peat soil, plasticity index, soil stabilization
Procedia PDF Downloads 3296768 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 756767 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria
Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande
Abstract:
This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model
Procedia PDF Downloads 2196766 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis
Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik
Abstract:
Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.Keywords: D. strictus, bamboo, neem oil, presure treatment, compressive strength
Procedia PDF Downloads 4096765 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 636764 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting
Authors: A. Mohammed, R. Lewis, M. Marshall
Abstract:
Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.Keywords: solid particle erosion, PVD-coatings, steel, erosion testing
Procedia PDF Downloads 2466763 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 836762 Economic and Environmental Life Cycle Analysis of Construction and Demolition Waste Management System
Authors: Yanqing Yi, Maria Cristina Lavagnolo, Alessandro Manzardo
Abstract:
Construction and demolition waste (C&DW) is a major challenge in the European Union, emphasizing the urgent need for appropriate waste management processes. Selecting these solutions is challenging, as it requires identifying efficient C&DW management techniques that balance acceptable practices, regulatory compliance, resource conservation, economic viability, and environmental concerns. Techniques for analyzing many kinds of criteria allow for the use of multi-criteria analysis in life cycle assessment (LCA). Although LCA is commonly used to analyze environmental effects, the economic factor has not been fully integrated into the LCA approach in C&DW management. The life cycle costing (LCC) approach was designed to assess economic performance in the C&DW management process. The choice of an effective multi-criteria decision-making (MCDM) technique is critical for the C&DW system. This study seeks to propose a model that employs MCDM by considering LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, indicating it has the highest environmental impact. Finally, suggestions were developed to improve the system's environmental performance.Keywords: life cycle assessment, life cycle costing, construction and demolition waste, multi-criteria decision making
Procedia PDF Downloads 716761 V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron
Authors: A. E. Dumitriu
Abstract:
The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV.Keywords: LHCb physics, RIVET plug-in, RIVET, CERN
Procedia PDF Downloads 4286760 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 23